MHB Congruence Class Proofs: Tips and Examples

  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Class Proof
Joe20
Messages
53
Reaction score
1
Hi, I have tried the question as attached. I am not sure if I am correct. You help is greatly appreciated. Thanks in advance!
 

Attachments

  • 2222.png
    2222.png
    6 KB · Views: 119
  • Untitled.png
    Untitled.png
    37.6 KB · Views: 121
Physics news on Phys.org
Hi Alexis87,

I like the idea to examine each of the cases. A few were left out - e.g., $[a]==[2]$ - and I don't know if that was intentional on your part or not. It may be a little neater to note that the result of squaring in $\mathbb{Z}_{3}$ can only be $[0]$ or $[1]$, in which case there are only three possibilities to check. Your counterexample looks good.
 
I would consider it simpler to write the first number as [a]= 3n+ a and the second as = 3m+ b where a and b are one of 0, 1, or 2. Then $[a]^2+ ^2= (3n+a)^2+ (3m+ b)^2= 9n^2+ 6an+ a^2+ 9m^2+ 6bm+ b^2= 3(3n^3+3m^3+ 2an+ 2bm)+ a^2+ b^2= 0$.

So we must have a and b less than 3 and $a^2+ b^2= 0$. From that, a= 0, b= 0 so that [a]= = 0.
 
HallsofIvy said:
I would consider it simpler to write the first number as [a]= 3n+ a and the second as = 3m+ b where a and b are one of 0, 1, or 2. Then $[a]^2+ ^2= (3n+a)^2+ (3m+ b)^2= 9n^2+ 6an+ a^2+ 9m^2+ 6bm+ b^2= 3(3n^3+3m^3+ 2an+ 2bm)+ a^2+ b^2= 0$.

So we must have a and b less than 3 and $a^2+ b^2= 0$. From that, a= 0, b= 0 so that [a]= = 0.


Hi HallsofIvy,

may I ask what's the purpose of showing this expression:
=3(3n3+3m3+2an+2bm)+a2+b2=0 ?

Is there any thing we can interpret from this equation?

So for "So we must have a and b less than 3" does it mean that because it is Z subscript 3?
 
The purpose is to realize that $3(3n^3+ 3m^3+ 2an+ 2bn)$ is a multiple of 3 and so can be ignored "modulo 3". That is why I can say "We must have a and b positive integers less than 3 such that $a^2+ b^2= 0$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top