MHB Congruences - Rotman - Proposition 1.58 - Second Question

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on Proposition 1.58 from Joseph J. Rotman's "A First Course in Abstract Algebra," specifically the proof of part (iii). It establishes that if \( a \equiv b \text{ mod } m \), then \( r \equiv r' \text{ mod } m \) leads to \( r = r' \) by leveraging the contrapositive of part (ii). The participants clarify that both \( r \) and \( r' \) being non-negative integers less than \( m \) necessitates \( r = r' \) for \( m | (r - r') \) to hold true.

PREREQUISITES
  • Understanding of modular arithmetic and congruences
  • Familiarity with the contrapositive in logical reasoning
  • Basic knowledge of integer properties
  • Experience with proofs in abstract algebra
NEXT STEPS
  • Study the contrapositive implications in mathematical proofs
  • Explore additional examples of modular arithmetic in Rotman's text
  • Learn about the properties of integers in relation to congruences
  • Review Section 1.5 of "A First Course in Abstract Algebra" for deeper insights
USEFUL FOR

Students of abstract algebra, mathematicians interested in modular arithmetic, and anyone seeking to understand the logical structure of mathematical proofs.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J.Rotman's book, A First Course in Abstract Algebra.

I am currently focused on Section 1.5 Congruences.

I need help with the proof of Proposition 1.58 part (iii) ...

Proposition 1.58 reads as follows:View attachment 4523
View attachment 4524

In the above text we read the following:" ... ... Therefore, if $$a \equiv b \text{ mod } m$$, then $$a - b = 0 \text{ mod } m$$, hence$$ r - r' \equiv 0 \text{ mod } m$$, hence $$r - r' \equiv 0 \text{ mod } m$$, and $$r \equiv r' \text{ mod } m$$; by part (ii), $$r = r'$$. ... ... "


My question is ... how exactly does it follow from part (ii) of Proposition 1.58 that $$r = r'$$ ...Note: I suspect Rotman is asking us to use the contrapositive of (ii) ... in other words the negative of $$r \nequiv r' \text{ mod m }$$ ( which is presumably $$r \equiv r'$$ ) implies the negative of $$0 \le r' \lt r \lt m$$ ... but what exactly is the negative of $$0 \le r' \lt r \lt m$$?
 
Physics news on Phys.org
Peter said:
I am reading Joseph J.Rotman's book, A First Course in Abstract Algebra.

I am currently focused on Section 1.5 Congruences.

I need help with the proof of Proposition 1.58 part (iii) ...

Proposition 1.58 reads as follows:In the above text we read the following:" ... ... Therefore, if $$a \equiv b \text{ mod } m$$, then $$a - b = 0 \text{ mod } m$$, hence$$ r - r' \equiv 0 \text{ mod } m$$, hence $$r - r' \equiv 0 \text{ mod } m$$, and $$r \equiv r' \text{ mod } m$$; by part (ii), $$r = r'$$. ... ... "


My question is ... how exactly does it follow from part (ii) of Proposition 1.58 that $$r = r'$$ ...Note: I suspect Rotman is asking us to use the contrapositive of (ii) ... in other words the negative of $$r \nequiv r' \text{ mod m }$$ ( which is presumably $$r \equiv r'$$ ) implies the negative of $$0 \le r' \lt r \lt m$$ ... but what exactly is the negative of $$0 \le r' \lt r \lt m$$?
Since both $r$ and $r'$ are non-negative integers which are strictly less than $m$, we can have $m|(r-r')$ only if $r=r'$.Try this with small values of $m$.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K