For the cohomology of a n-sphere, I am having difficulty explicitly showing that the connecting homomorphism from (n-1) deRham group of U∩V which is isomorphic to (n - 1) sphere (which is simply R) to the n-deRham group of n-sphere is surjective!(adsbygoogle = window.adsbygoogle || []).push({});

On the exact long sequence, I have showed that i*-j* leading up to (n-1) deRham group of U∩V from the trivial deRham group of the direct sum U,V open covers of the sphere iso. to Rn is injective.

By definition of long sequence, (n-1) deRham group of U∩V is exact.

Now I am missing to explicitly show connecting homomorphism is surjective that way I can use the isomorphism theorems to show that

n-deRham group of n-sphere = R \ Im i*-j* where this image is trivial leaving us that this group is isomorphic to R.

I solved this problem by just explicitly making a homomorphism from each group which has an inverse, both right and left, hence it is isomorphic. But I'm having trouble using the isomorphism theorems, zigzag lemma to prove the isomorphism. Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Connecting homomorphism question

Loading...

Similar Threads for Connecting homomorphism question |
---|

I Problem about a connected subspace |

A Connected sum of manifolds and free group isomorphisms |

A Fundamental group of n connect tori with one point removed |

I Intuition behind induced homomorphism from covering maps |

I Retract of a connected space is connected |

**Physics Forums | Science Articles, Homework Help, Discussion**