Conservation of Angular Momentum of Train on Disk

I then went through your algebra. It looks correct. But I didn't check every step. It looks like you can solve for ##\omega_{disc}## now. I don't see where in your calculations you came up with 0.374. But I'm feeling too lazy to do the rest of it right now. I'm sure you can figure it out. You should have 4 numerical values. The first one is the radius of the tracks. the second one is the mass of the train. The third one is the velocity of the train relative to the disk. And the fourth one is the velocity of the disk at the rim of the tracks.If I divide the whole equation by ωdisc,
  • #1
BBA Biochemistry

Homework Statement


A horizontal plywood disk with mass 6.90 kg and diameter 1.14 m pivots on frictionless bearings about a vertical axis through its center. You attach a circular model-railroad track of negligible mass and average diameter 1.04 m to the disk. A 1.40 −kg , battery-driven model train rests on the tracks. To demonstrate conservation of angular momentum, you switch on the train's engine. The train moves counterclockwise, soon attaining a constant speed of 0.790 m/s relative to the tracks. What is the magnitude and direction of the angular velocity?

Homework Equations


L=rp
L=Iω
v=ωr

The Attempt at a Solution


[/B]
As the problem states, this is definitely a conservation of angular momentum problem. The train is a particle with angular momentum, so it's angular momentum is given by L=rp.

Lt=rtps=Lt=rtmsvt

Since the train is part of the system, when it gained this angular momentum, to disk must have also gained an equal amount of angular momentum in the opposite direction.

Ld=Idωd=0.5mdrd2ωd
Ld+Lt=0

Setting them equal to each other gets:

rtmtvt=0.5mdrd2ωd

Solving for ωd gets 0.513 rad/s (as the magnitude), but this isn't the correct answer. What am I missing?
 
Physics news on Phys.org
  • #2
BBA Biochemistry said:
Lt=rtps=Lt=rtmsvt
When someone writes down an equation like this, my first reaction is almost always:

What is ##L_t##? What is ##r_t##? What is ##p_s##, what is ##m_s## and what is ##v_t##.

Document your variable names.

I would guess that ##L_t## is the angular momentum of the train and ##r_t## is the radius of the tracks. And I would guess that ##v_t## is the velocity of the train relative to the disc. But then what are ##p_s## and ##m_s##? One would have expected ##p_t## and ##m_t## as the linear momentum of the [short] train, and its mass respectively.

There is a key gotcha here. By not carefully documenting the variable names, it is left unclear what ##v_t## is relative to. Is that supposed to be a velocity relative to the lab frame or a velocity relative to the tracks? The given in the problem is a velocity relative to the tracks. The relevant velocity you need is velocity relative to the non-rotating lab frame.

Since the train is part of the system, when it gained this angular momentum, to disk must have also gained an equal amount of angular momentum in the opposite direction.

Ld=Idωd=0.5mdrd2ωd
Ld+Lt=0
What is ##L_d##, what is ##l_d##, what is ##\omega_d##, what is ##m_d##, what is ##r_d##?

Guessing... ##L_d## is the angular momentum of the disk, ##I_d## is its moment of inertia, ##\omega_d## is the angular rotation rate of the disk [against a non-rotating reference], ##m_d## is the mask of the disk and ##r_d## is its radius.

As for what went wrong... what about that gotcha I mentioned above?

Edit: One last minor nitpick...
Setting them equal to each other gets:
There is a sign error there. ##L_d+L_t=0## yields ##L_d=-L_t##. You should not be "setting them equal". You should be "substituting into" the latter equation.

[Documenting variable names is something that was drilled into our heads when learning computer programming in the '70's. It is a good practice in many other disciplines as well. Including physics].
 
Last edited:
  • #3
Thanks for your reply! Relative velocity has always been a weak point for me.

I seem to have made a few typos. The subscripts "s" are supposed to be "t" for the train/track. The subscripts "d" are for "disk."

So if the train is moving with a linear velocity of 0.790 m/s relative to the tracks, its linear velocity with respect to the Earth would be 0.790 m/s + vtracks,rel,earth. The linear velocity of the tracks and the disk (relative to the Earth) would be the same, since the tracks are attached to the disk. Using the velocity of the train with respect to the earth, its angular momentum equation becomes:

Ltrain=rtracksmtrain(vtrain+vdisc)

The angular velocity of the disc relative to the Earth would still be:

Ldisc=0.5mdiscr2discωdisc

I used the relationship v=rω to get angular velocity instead of linear velocity in the first equation:

Ltrain=rtracksmtrain(vtrain+rdiscωdisc).

Then I used the conservation of angular momentum to solve for ω, getting 0.815 rad/s, but this was incorrect. Was my setup wrong somewhere?
 
  • #4
BBA Biochemistry said:
I seem to have made a few typos. The subscripts "s" are supposed to be "t" for the train/track. The subscripts "d" are for "disk."
Ok. Then we're at least agreed on what the variable names mean.

Ltrain=rtracksmtrain(vtrain+vdisc)

Without working through the arithmetic myself, it seems to me that you have a sign error. The velocity of the disk is in the opposite direction to the velocity of the train. If you are using a sign convention where the velocity of the disk is positive, that means that you have to subtract it, not add.
 
  • #5
Yes I forgot to account for the opposite direction.

Using the equation:

Ltrain=rtracksmtrain(vtrain-vdisc)

I got the answer to be 0.374, which the website was nice enough to let me know that is was close, but not quite. I'm assuming my set-up is correct.

If you could check through my arithmetic that would be great!

Ltrain=Ldisc

rtracksmtrain(vtrain-vdisc)=0.5mdiscr2discωdisc

rtracksmtrainvtrain-rdiscωdiscrtracksmtrain=0.5mdiscr2discωdisc

rtracksmtrainvtrain=rdiscωdiscrtracksmtrain+0.5mdiscr2discωdisc

rtracksmtrainvtraindisc(0.5mdiscrdisc2+rdiscrtracksmtrain)

I then divided by (0.5mdiscrdisc2+rdiscrtracksmtrain) to get my answer. I've triple checked to make sure I didn't make a typo in my calculator. Is it a coincidence my answer is close :/ ?
 
  • #6
BBA Biochemistry said:
Yes I forgot to account for the opposite direction.

Using the equation:

Ltrain=rtracksmtrain(vtrain-vdisc)

I got the answer to be 0.374, which the website was nice enough to let me know that is was close, but not quite. I'm assuming my set-up is correct.

If you could check through my arithmetic that would be great!
Dang. I hate checking arithmetic. Let's see if I can follow your formulas first.
Ltrain=Ldisc
You've set ##L_{train}## equal to ##L_{disc}##. So we're using a sign convention where both can be positive. That's fine.
rtracksmtrain(vtrain-vdisc)=0.5mdiscr2discωdisc
You've substituted in your formulas for the angular momentum of both into the previous equality. That's good. And you're keeping everything symbolic for now. That's double-plus good.
rtracksmtrainvtrain-rdiscωdiscrtracksmtrain=0.5mdiscr2discωdisc
Wait a minute here. You have the velocity of the train (lab frame) being calculated as the velocity of the train (disk frame) minus the velocity of the disk. That much is good. But the relevant disk velocity is the velocity of the disk where the tracks are. You wrote down a formula for the velocity of the disk at its rim.

*whew*. I don't have to check your arithmetic. It's the formulas that need work.
 
Last edited:
  • Like
Likes TSny
  • #7
Mhm...

I'm not sure I follow. I think you're saying the left side of the equation is on the right track, but my disc velocity is incorrect.

rtracksmtrainvtrain-rdiscωdiscrtracksmtrain=0.5mdiscr2discωdisc

jbriggs444 said:
But the relevant disk velocity is the velocity of the disk where the tracks are. You wrote down a formula for the velocity of the disk at its rim.

After some additional thought, it seems that I made an incorrect assumption that the linear velocities of the rims of the disk and train were equal, which is not the case since the radii is different. I'd need to calculate the linear velocity of the disk/train tracks at the radius of the train tracks, and use that instead of the velocity of the rim of the disk.

So my equation should now be:

rtracksmtrain(vtrain-vtracks)=Ltrain

I would then set this equal to the angular momentum of the disk.

I have to go to class now so I can't attempt a solution, but I thought I'd post this in case there's something wrong with my assessment here.
 
  • Like
Likes jbriggs444

Related to Conservation of Angular Momentum of Train on Disk

1. What is the conservation of angular momentum?

The conservation of angular momentum is a fundamental law of physics that states that the total angular momentum of a closed system remains constant over time, unless an external torque is applied. This means that the amount of rotational motion in a system will remain the same unless an outside force acts upon it.

2. How does this law apply to a train on a disk?

When a train is traveling on a circular track, it is essentially a closed system. The train and the disk it is riding on have a certain amount of angular momentum, which remains constant unless an external torque (such as friction) is applied. This means that as the train moves around the track, its angular momentum must be conserved.

3. Why is the conservation of angular momentum important in this scenario?

The conservation of angular momentum is important in the scenario of a train on a disk because it helps us understand and predict the motion of the system. By knowing that the angular momentum will remain constant, we can use this law to calculate the speed and direction of the train as it moves around the track.

4. Can the train's angular momentum change?

Yes, the train's angular momentum can change if an external torque is applied. In the case of a train on a disk, this could happen if there is friction between the train and the disk, or if the train encounters a bump or obstacle on the track. In these situations, the train's angular momentum will decrease as some of its rotational motion is converted into linear motion or absorbed by the external force.

5. How does the size of the disk affect the conservation of angular momentum?

The size of the disk does not affect the conservation of angular momentum, as long as the disk is a part of the closed system. The angular momentum of the train and the disk will remain constant regardless of the size of the disk, as long as no external torques are applied. However, a larger disk may have a greater moment of inertia, which could affect the train's speed and acceleration as it moves around the track.

Similar threads

  • Introductory Physics Homework Help
Replies
30
Views
2K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
10
Replies
335
Views
9K
  • Introductory Physics Homework Help
Replies
9
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
922
  • Introductory Physics Homework Help
Replies
18
Views
5K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
1K
Back
Top