Conservation of energy for a series of elastic collisions

Click For Summary
The discussion centers on the calculation of the speed of a block after multiple elastic collisions, with the initial formula presented as V_n=(2e)^n*v_0. However, participants challenge this formula, asserting it is only accurate for the first collision. The correct expression for the speed after the nth collision is proposed as V_n=2e(1-2e)^{n-1}*v_0, referencing specific equations from a textbook. Additionally, the total distance traveled by the block is derived using conservation of energy principles, leading to a formula that incorporates the initial speed and the coefficient of restitution. The conversation highlights the importance of accurately applying principles of physics to derive correct formulas for elastic collisions.
Andrew1235
Messages
5
Reaction score
1
Homework Statement
A link to the problem: https://i.stack.imgur.com/tDhbm.png

A link to the solution: https://i.stack.imgur.com/h5s1g.png
Relevant Equations
Conservation of energy
The speed of the block after the nth collision is

$$ V_n=(2e)^n*v_0 $$

By conservation of energy the block travels a distance $$V_n^2/(2ug)$$ on the nth bounce. So the total distance is

$$ d=1/(2ug)∗(v_0^2+(2ev_0)^2...) $$

$$ d=1/(2ug)∗(v_0^2/(1−4e^2)) $$

$$ d=1/(2ug)∗(v_0^2∗M^2/(M^2−4m^2)) $$


Can someone explain why this is incorrect?
 
Physics news on Phys.org
I don't believe the following is correct (other than for n = 1).
Andrew1235 said:
The speed of the block after the nth collision is

$$ V_n=(2e)^n*v_0 $$
Can you explain how you got this?
 
Andrew1235 said:
The speed of the block after the nth collision is
$$ V_n=(2e)^n*v_0 $$
According to 5.155 and 5.156, it should be
$$ V_n=2e(1-2e)^{n-1}*v_0 $$
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K