mark2142
- 218
- 41
Can I do it like this to conserve total P of say 3 body system in y-direction?
$$F_{aby}=-F_{bay}$$
$$F_{cby}=-F_{bcy}$$
$$F_{cay}=-F_{acy}$$
$$F_{aby}+F_{cby}+F_{cay}=-F_{bay}-F_{bcy}-F_{acy}$$
$$\frac d{dt}(p_{ay}+p_{cy}+p_{cy})=-\frac d{dt}(p_{by}+p_{by}+p_{ay})$$
$$\frac d{dt}(p_{ay}+p_{cy}+p_{cy}+p_{by}+p_{by}+p_{ay})=0$$
$$\frac d{dt}(p_{ay}+p_{by}+p_{cy})=0$$
$$p_{ay}+p_{by}+p_{cy}=constant$$
$$F_{aby}=-F_{bay}$$
$$F_{cby}=-F_{bcy}$$
$$F_{cay}=-F_{acy}$$
$$F_{aby}+F_{cby}+F_{cay}=-F_{bay}-F_{bcy}-F_{acy}$$
$$\frac d{dt}(p_{ay}+p_{cy}+p_{cy})=-\frac d{dt}(p_{by}+p_{by}+p_{ay})$$
$$\frac d{dt}(p_{ay}+p_{cy}+p_{cy}+p_{by}+p_{by}+p_{ay})=0$$
$$\frac d{dt}(p_{ay}+p_{by}+p_{cy})=0$$
$$p_{ay}+p_{by}+p_{cy}=constant$$