Considering the expansion , Find the value

  • Context: MHB 
  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Expansion Value
Click For Summary
SUMMARY

The discussion focuses on evaluating the expression $2\left(24^3-3*24^2*4+3*24*4^2-4^3\right)$ using the expansion of $(x-y)^3$. The participants confirm that this expression simplifies to $2(24 - 4)^3$, which equals $16,000$. The expansion formula $x^3 - 3x^2y + 3xy^2 - y^3$ is applied to derive the solution, demonstrating the equivalence of the two forms.

PREREQUISITES
  • Understanding of polynomial expansions, specifically the binomial theorem.
  • Familiarity with the formula for the expansion of $(x-y)^3$.
  • Basic arithmetic operations and simplification techniques.
  • Knowledge of evaluating cubic expressions.
NEXT STEPS
  • Study the binomial theorem and its applications in polynomial expansions.
  • Practice problems involving the expansion of cubic expressions.
  • Explore other polynomial identities and their proofs.
  • Learn about the significance of cubic equations in algebra.
USEFUL FOR

Students, educators, and anyone interested in mastering polynomial expansions and cubic equations in algebra.

mathlearn
Messages
331
Reaction score
0
Considering the expansion of $(x-y)^3$ , Find the value of $2\left(24^3-3*24^2*4+3*24*4^2-4^3\right)$

Any Ideas on how to begin ? (Mmm)
 
Mathematics news on Phys.org
$(x-y)^3=x^3-3x^2y+3xy^2-y^3$
 
mathlearn said:
Considering the expansion of $(x-y)^3$ , Find the value of $2\left(24^3-3*24^2*4+3*24*4^2-4^3\right)$

Any Ideas on how to begin ?
The expansion is: \; (x-y)^3 \;=\;x^3 - 3\!\cdot\! x^2\!\cdot\! y + 3\!\cdot \!x\!\cdot\! y^2 - y^3

. . . . . . . . . Compare that to: 24^3 - 3\!\cdot\! 24^2\!\cdot\! 4 + 3\!\cdot\! 24\!\cdot\! 4^2 - 4^3Can you see that it is equal to (24 - 4)^3 \;=\;20^3 \;=\;8,000
 
soroban said:
The expansion is: \; (x-y)^3 \;=\;x^3 - 3\!\cdot\! x^2\!\cdot\! y + 3\!\cdot \!x\!\cdot\! y^2 - y^3

. . . . . . . . . Compare that to: 24^3 - 3\!\cdot\! 24^2\!\cdot\! 4 + 3\!\cdot\! 24\!\cdot\! 4^2 - 4^3Can you see that it is equal to (24 - 4)^3 \;=\;20^3 \;=\;8,000

Thank you (Yes) ,

As the problem states,

mathlearn said:
$2\left(24^3-3*24^2*4+3*24*4^2-4^3\right)$

It should be $2(24 - 4)^3 $, Agree ? (Nod)
 
Yes, which equals 16000.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K