Constants in scalar and vector potentials

AI Thread Summary
The discussion focuses on the interpretation of constants a and γ in the scalar potential Φ and vector potential A. The constant a represents amplitude, while γ serves as the attenuation or damping factor over time, indicating that the amplitude decreases significantly by t = 5/γ. Both constants are deemed measurable, particularly through the scalar potential, and can be inferred from measurements of electric and magnetic fields. Additionally, the discussion notes that gauge conditions, such as Coulomb and Lorentz gauges, are necessary for measuring both potentials. Overall, a and γ have physical significance rather than being arbitrary values.
struggling_student
Messages
9
Reaction score
1
We have a scalar potential $$\Phi(\vec{r})=\frac{q}{4\pi\epsilon_0} \left( \frac{1}{r} - \frac{a^2\gamma e^{-\gamma t}\cos\theta}{r^3}\right)$$

and a vector potential $$\vec{A}(\vec{r})=\frac{a^2qe^{-\gamma t}}{4\pi\epsilon_0r^4}\left(3\cos\theta\hat{r} + \sin\theta\hat{\theta} \right) .$$

how do I interpret the constants ##a## and ##\gamma##. Do they have any physical meaning or are they arbitrary, unmeasurable values?
 
Physics news on Phys.org
Focusing first on the formula for vector potential, we can say that ##a## is part of the amplitude while ##\gamma## is the attenuation factor (or the damping factor) with respect to time. In time ##t=\frac{5}{\gamma}## the amplitude loses 99.32% of its initial value at time t=0.

Similar things can be said for the ##\frac{1}{r^3}## term of the scalar potential.

As to if they are measurable things, yes they are. At least from what I know is that usually we can measure the scalar potential (not sure about the vector potential) and from that we can infer the values of a ang gamma.

P.S We can measure both scalar and vector potential but we have to use additional conditions (known as gauge conditions, e.g. Coulomb gauge, Lorentz gauge. In any case what we actually can measure is electric and magnetic field , ##\vec{E},\vec{B}##.
 
Last edited:
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top