MHB Construct 3 Augmented Matrices for Linear Systems

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.1.1.26}$
Construct 3 augmented matrices for linear systems whose solution set is $x_1=3, \quad x_2=-2, \quad x_3=-1$
ok the only thing I could think of is just rearrange the rows of an RREF matrix. albeit losing the triangle format
hopefully no typos
$\left[\begin{array}{rrr|rr}
1& 0& 0& 3\\ 0& 1& 0& -2\\ 0& 0& 1& -1\\
\end{array}\right]
\quad
\left[\begin{array}{rrr|rr}
0& 1& 0& -2\\ 1& 0& 0& 3\\ 0& 0& 1& -1\\
\end{array}\right]
\quad
\left[\begin{array}{rrr|rr}
0& 1& 0& -2\\0& 0& 1& -1\\ 1& 0& 0& 3\\
\end{array}\right]
$
 
Physics news on Phys.org
If the problem only asks for "3 augmented matrices for linear systems whose solution set is $x_1=3$, $x_2=−2$, $x_3=−1$" then that is perfectly good. Your teacher might complain that you are not being creative enough but that is the fault of the question! You can get other matrices by "row operations" on those matrices, basically the reverse of using row operations to solve matrix equations.

For example, adding 3 times the second row of the first of your three matrices to the first row gives
$\left[\begin{array}{rrr|rr}
1& 3& 0& -3\\ 0& 1& 0& -2\\ 0& 0& 1& -1\\
\end{array}\right]
$
 
ok that helps a lot i will try to get back to this tmro
btw you have really helped me a lot in this forum, and deeply appreciate it
I'm retired so pretty much on my own except for the zoom classes
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K