MHB Construct using unmarked straight edge only

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Edge
AI Thread Summary
To construct a line through point P that is parallel to line AB using only an unmarked straight edge, first identify the midpoint M of AB. Draw a random line through M that intersects line AP at point X and line BP at point Y. The intersection of lines BX and AY creates point Z, which establishes that line PZ is parallel to AB. This construction effectively connects point P to the harmonic conjugate of M on line AB, which is the point at infinity. The discussion concludes with the application of Ceva's theorem to finalize the construction.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let points $A$ and $B$ be given on the plane. The mid point of $A$ and $B$, call it $M$, is also given. Mark an arbitrary point $P$ on the plane. Using unmarked straight edge only, construct the line passing through $P$ and parallel to $AB$.
 
Mathematics news on Phys.org
caffeinemachine said:
Let points $A$ and $B$ be given on the plane. The mid point of $A$ and $B$, call it $M$, is also given. Mark an arbitrary point $P$ on the plane. Using unmarked straight edge only, construct the line passing through $P$ and parallel to $AB$.
View attachment 415

Draw a random line through $M$, meeting $AP$ at $X$, and $BP$ at $Y$. Let $Z$ be the point of intersection of $BX$ and $AY$. I'll leave you to figure out why $PZ$ is parallel to $AB$.

Hint: What this does is to construct the line connecting $P$ to the harmonic conjugate of $M$ on the line $AB$ (which happens to be the point at infinity).
 

Attachments

  • parallel.png
    parallel.png
    3.8 KB · Views: 84
Last edited:
Opalg said:
https://www.physicsforums.com/attachments/412​
Draw a random line through $M$, meeting $AP$ at $X$, and $BP$ at $Y$. Let $Z$ be the point of intersection of $BX$ and $AY$. I'll leave you to figure out why $PZ$ is parallel to $AB$.

Hint: What this does is to construct the line connecting $P$ to the harmonic conjugate of $M$ on the line $AB$ (which happens to be the point at infinity).
Thank You. I can conclude now using Ceva's theorem.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top