Suppose we have a manifold ##M## and at ##p \in M## we have a basis for the tangent space of vectors ##X_i##. Since ##M## is a manifold, there exists a local chart ##(U,\phi)## about ##p##. Now the question is, given such a chart , how can we construct a new chart in a such that ##X_i = \left. \frac{\partial}{\partial x^\mu} \right|_{p}##.(adsbygoogle = window.adsbygoogle || []).push({});

I know there is a theorem that says given commuting vector fields we can find a chart such that these vector fields locally is the coordinate basis of that chart.

However, I want to prove in a transparent manner the less general statement above; that we can construct a coordinate system such that the vector ##X_i## _in the tangent space at p_ is the coordinate basis ##\left. \tfrac{\partial}{\partial x^\mu} \right|_{p}## just at p.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Constructing a chart with coord. basis equal to given basis at one pt.

**Physics Forums | Science Articles, Homework Help, Discussion**