cianfa72
- 2,856
- 302
Ah ok, one gets the basis of tangent vectors at the Lie group identity (i.e. Lie algebra basis vectors) calculating the derivatives of group element w.r.t. the parameters ##t## and ##c## and evaluating them at ##t=0,c=0##.fresh_42 said:This is a non-abelian Lie group. The tangent vectors (at the identity) are
$$X=\begin{pmatrix} 1&0\\0&-1 \end{pmatrix}\, , \,Y=\begin{pmatrix} 0&1\\0&0 \end{pmatrix}$$ with ##[X,Y]=2Y.##