Contravariant derivative of a tensor field in terms of generalized coordinates?

Click For Summary
The discussion focuses on the definition and interpretation of the contravariant derivative of a tensor field in generalized coordinates. It highlights the relationship between the Laplacian and the gradient, emphasizing the need to express the gradient in contravariant components. Concerns are raised regarding the terminology of 'contravariant derivative' and its absence in certain literature. The conversation also explores the mathematical expressions for both covariant and contravariant derivatives, questioning if a similar interpretation exists for the contravariant derivative. The thread seeks clarity on the application of the metric in raising indices and its implications for tensor calculus.
yucheng
Messages
232
Reaction score
57
Homework Statement
N/A
Relevant Equations
N/A
1. The laplacian is defined such that
$$ \vec{\nabla} \cdot \vec{\nabla} V = \nabla_i \nabla^i V = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^{i}} \left(\sqrt{Z} Z^{ij} \frac{\partial V}{\partial Z^{j}}\right)$$

(##Z## is the determinant of the metric tensor, ##Z_i## is a generalized coordinate)

But

$$\vec{\nabla} V = \vec{e}^i\nabla_{i} V = \vec{e}^{i} \partial_i V$$

So we need to express the gradient in terms of contravariant components before using the divergence formula.In Pavel Grinfeld's book, the author claims that $$\nabla^{i} V = Z^{ij}\nabla_{j} V$$ and the author calls this the 'contravariant' derivative.

However, I am concerned because:
https://math.stackexchange.com/ques...erivative-or-why-are-all-derivatives-covarian

and I cannot find the term 'contravariant derivative' anywhere. So...?

Since the contravariant derivative is defined as

$$\nabla_{i} F^{j} = \frac{\partial F^{j}}{\partial Z^{i}} + F^{k} \Gamma^{j}_{ki}$$ ,is there a similar interpretation for $$\nabla^{i} F^{j}$$?

Thanks in advance!

P.S. This might be of interest, but maybe not

https://math.stackexchange.com/ques...-application-of-contravariant-derivative-on-a
 
Last edited:
Physics news on Phys.org
You can raise the index on ##\nabla## with the metric as per usual, i.e. ##\nabla^i = Z^{ij} \nabla_j##
 
ergospherical said:
You can raise the index on ##\nabla## with the metric as per usual, i.e. ##\nabla^i = Z^{ij} \nabla_j##
But is there an interpretation for

$$Z^{mi} \nabla_{i} F^{j} = Z^{mi}\frac{\partial F^{j}}{\partial Z^{i}} + F^{k}Z^{mi} \Gamma^{j}_{ki}$$?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
14
Views
4K
Replies
5
Views
4K
  • · Replies 10 ·
Replies
10
Views
540
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K