Metric tensor and gradient in spherical polar coordinates

In summary, the conversation discusses the computation of metric tensor components and coefficients in spherical coordinates, as well as the orthogonality and unit vectors of the partial derivatives. The correct calculations for ##g_{r\theta}##, ##g_{r\phi}##, ##g_{\theta\phi}##, ##(\nabla f)^{r}##, ##(\nabla f)^{\theta}##, and ##(\nabla f)^{\phi}## are shown. Additionally, the definition of the gradient vector and its relationship to the covector ##df## are mentioned.
  • #1
spaghetti3451
1,344
33

Homework Statement



Let ##x##, ##y##, and ##z## be the usual cartesian coordinates in ##\mathbb{R}^{3}## and let ##u^{1} = r##, ##u^{2} = \theta## (colatitude), and ##u^{3} = \phi## be spherical coordinates.

  1. Compute the metric tensor components for the spherical coordinates ##g_{r\theta}:=g_{12}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial \theta}\big\rangle\ \text{etc.}##
  2. Compute the coefficients ##(\nabla\ f)^{j}## in ##\nabla\ f = (\nabla\ f)^{r}\frac{\partial}{\partial r}+(\nabla\ f)^{\theta}\frac{\partial}{\partial \theta}+(\nabla\ f)^{\phi}\frac{\partial}{\partial \phi}##.
  3. Verify that ##\frac{\partial}{\partial r}##, ##\frac{\partial}{\partial\theta}##, and ##\frac{\partial}{\partial\phi}## are orthogonal, but that not all are unit vectors. Define the unit vectors ##{\bf{e}}'_{j}=\frac{(\partial / \partial u^{j})}{||\partial / \partial u^{j}||}## and write ##\nabla\ f## in terms of this orthonormal set ##\nabla\ f = (\nabla\ f)'^{r}{\bf{e}}'_{r}+(\nabla\ f)'^{\theta}{\bf{e}}'_{\theta}+(\nabla\ f)'^{\phi}{\bf{e}}'_{\phi}##.

Homework Equations



The Attempt at a Solution



## g_{r\theta}:=g_{12}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial \theta}\big\rangle\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial r}\frac{\partial x}{\partial \theta}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial \theta}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial \theta}\\
=(\text{sin}\ \theta\ \text{cos}\ \phi)(r\ \text{cos}\ \theta)(\text{cos}\ \theta)+(\text{sin}\ \theta\ \text{sin}\ \phi)(r\ \text{cos}\ \theta)(\text{sin}\ \phi)+(\text{cos}\ \theta)(-r\ \text{sin}\ \theta)\\
=0##

Am I correct so far?
 
Last edited:
Physics news on Phys.org
  • #2
failexam said:
Am I correct so far?
Yes
 
  • #3
Ok, so now let me do the remaining calculations in parts 1 and 2.

## g_{r\phi}:=g_{13}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial \phi}\big\rangle\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial r}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial \phi}\\
=(\text{sin}\ \theta\ \text{cos}\ \phi)(-r\ \text{sin}\ \theta\ \text{sin}\ \phi)+(\text{sin}\ \theta\ \text{sin}\ \phi)(r\ \text{sin}\ \theta\ \text{cos}\ \phi)+(\text{cos}\ \theta)(0)\\
=0
##

##
g_{\theta\phi}:=g_{23}=\big\langle\frac{\partial}{\partial \theta}\ ,\ \frac{\partial}{\partial \phi}\big\rangle\\
= \big\langle\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial \theta}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial \theta}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial \theta}\frac{\partial z}{\partial \phi}\\
=(r\ \text{cos}\ \theta\ \text{cos}\ \phi)(-r\ \text{sin}\ \theta\text{sin}\ \phi)+(r\ \text{cos}\ \theta\ \text{sin}\ \phi)(r\ \text{sin}\ \theta\ \text{cos}\ \phi)+(-r\ \text{sin}\ \theta)(0)\\
=0
##

2

## ({\nabla f })^{r}=g_{rr}=:=g_{11}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial r}\big\rangle\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial r}\frac{\partial x}{\partial r}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial r}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial r}\\
=(\text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(\text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(\text{cos}\ \theta)^{2}\\
=1
##
## ({\nabla f })^{\theta}=g_{\theta\theta}=:=g_{22}=\big\langle\frac{\partial}{\partial \theta}\ ,\ \frac{\partial}{\partial \theta}\big\rangle\\
= \big\langle\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial \theta}\frac{\partial x}{\partial \theta}+\frac{\partial y}{\partial \theta}\frac{\partial y}{\partial \theta}+\frac{\partial z}{\partial \theta}\frac{\partial z}{\partial \theta}\\
=(r\ \text{cos}\ \theta\ \text{cos}\ \phi)^{2}+(r\ \text{cos}\ \theta\ \text{sin}\ \phi)^{2}+(-r\ \text{sin}\ \theta)^{2}\\
=r^{2}
##
## ({\nabla f })^{\phi}=g_{\phi\phi}=:=g_{22}=\big\langle\frac{\partial}{\partial \phi}\ ,\ \frac{\partial}{\partial \phi}\big\rangle\\
= \big\langle\frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial \phi}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial \phi}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial \phi}\frac{\partial z}{\partial \phi}\\
=(-r\ \text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(r\ \text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(0)^{2}\\
=r^{2}\text{sin}^{2}\theta
##

Are they correct?
 
  • #4
What is ##f##? Also, normally, the gradient is a covariant vector. Your notation is therefore not very clear to me.
 
  • #5
I mention the definition below:

If ##M^{n}## is a (psuedo)-Riemannian manifold and ##f## is a differentiable function, the gradient vector ##\nabla f## is the contravariant vector associated to the covector ##df## such that ##df({\bf{w}})=\langle\nabla f, {\bf{w}}\rangle## for some vector ##\bf{w}##.

Now, ##\displaystyle{df = \frac{\partial f}{\partial x^{j}}dx^{j}}## and ##\nabla f## is the contravariant vector associated to the covector ##df## so that ##\displaystyle{(\nabla f)^{i} = g^{ij}\frac{\partial f}{\partial x^{j}}}##.
 
  • #6
You still have not defined what ##f## is. Based on your problem statement, it is not necessarily the coordinate functions
 
  • #7
Thanks for pointing that out. I now understand my mistake in my proposed solution.

I think the function ##f## has to be kept untouched. Using the definition ##\displaystyle{(\nabla f)^{i} = g^{ij}\frac{\partial f}{\partial x^{j}}}##,

## ({\nabla f})^{r}=g^{rr}\frac{\partial f}{\partial r}=(g_{rr})^{-1}\frac{\partial f}{\partial r}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial r}\big\rangle ^{-1}\frac{\partial f}{\partial r}\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\big\rangle ^{-1}\frac{\partial f}{\partial r}\\
= (\frac{\partial x}{\partial r}\frac{\partial x}{\partial r}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial r}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial r}) ^{-1}\frac{\partial f}{\partial r}\\
=[(\text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(\text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(\text{cos}\ \theta)^{2}] ^{-1}\frac{\partial f}{\partial r}\\
=\frac{\partial f}{\partial r}
##

## ({\nabla f })^{\theta}=g^{\theta\theta}=(g_{\theta\theta}) ^{-1}\frac{\partial f}{\partial \theta}=\big\langle\frac{\partial}{\partial \theta}\ ,\ \frac{\partial}{\partial \theta}\big\rangle ^{-1}\frac{\partial f}{\partial \theta}\\
= \big\langle\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\big\rangle ^{-1}\frac{\partial f}{\partial \theta}\\
= (\frac{\partial x}{\partial \theta}\frac{\partial x}{\partial \theta}+\frac{\partial y}{\partial \theta}\frac{\partial y}{\partial \theta}+\frac{\partial z}{\partial \theta}\frac{\partial z}{\partial \theta}) ^{-1}\frac{\partial f}{\partial \theta}\\
=[(r\ \text{cos}\ \theta\ \text{cos}\ \phi)^{2}+(r\ \text{cos}\ \theta\ \text{sin}\ \phi)^{2}+(-r\ \text{sin}\ \theta)^{2}] ^{-1}\frac{\partial f}{\partial \theta}\\
=\frac{1}{r^{2}}\frac{\partial f}{\partial \theta}
##
## ({\nabla f })^{\phi}=g^{\phi\phi}=(g_{\phi\phi}) ^{-1}\frac{\partial f}{\partial\phi}=\big\langle\frac{\partial}{\partial \phi}\ ,\ \frac{\partial}{\partial \phi}\big\rangle ^{-1}\frac{\partial f}{\partial\phi}\\
= \big\langle\frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle ^{-1}\frac{\partial f}{\partial\phi}\\
= (\frac{\partial x}{\partial \phi}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial \phi}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial \phi}\frac{\partial z}{\partial \phi}) ^{-1}\frac{\partial f}{\partial\phi}\\
=[(-r\ \text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(r\ \text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(0)^{2}] ^{-1}\frac{\partial f}{\partial\phi}\\
=\frac{1}{r^{2}\text{sin}^{2}\theta}\frac{\partial f}{\partial\phi}##
 
  • #8
Note that it is not always true that ##g^{ij} = (g_{ij})^{-1}##. This is only true if ##\partial_r## is orthogonal to the other basis vectors. However, this is the case here.
 

What is a metric tensor in spherical polar coordinates?

A metric tensor in spherical polar coordinates is a mathematical object that describes the relationship between infinitesimal distances in curved space. It is used to measure distances, angles, and volumes in a coordinate system that is adapted to the curvature of the space.

How is the metric tensor defined in spherical polar coordinates?

In spherical polar coordinates, the metric tensor is defined as a 3x3 matrix with nine components. These components are calculated using the derivatives of the radial, polar, and azimuthal coordinates with respect to each other. The metric tensor is also dependent on the radius of the sphere, which represents the curvature of the space.

What is the significance of the metric tensor in physics?

The metric tensor plays a crucial role in general relativity, where it is used to describe the curvature of spacetime. It is also used in other fields of physics, such as fluid mechanics, electromagnetism, and quantum mechanics. It allows physicists to calculate distances, angles, and volumes in curved space, which is essential for understanding the behavior of particles and fields in these spaces.

What is the gradient in spherical polar coordinates?

The gradient in spherical polar coordinates is a mathematical operator that describes the rate of change of a scalar function in curved space. It is used to calculate the direction and magnitude of the steepest ascent of a scalar field. In spherical polar coordinates, the gradient is defined using the partial derivatives of the scalar function with respect to the radial, polar, and azimuthal coordinates.

How is the gradient related to the metric tensor in spherical polar coordinates?

In spherical polar coordinates, the gradient is related to the metric tensor through the use of the Christoffel symbols, which are defined in terms of the partial derivatives of the metric tensor. These symbols are used to calculate the components of the gradient vector in terms of the components of the metric tensor. This relationship is crucial for understanding the behavior of particles and fields in curved space.

Similar threads

  • Calculus and Beyond Homework Help
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
273
  • Calculus and Beyond Homework Help
Replies
2
Views
656
  • Calculus and Beyond Homework Help
Replies
3
Views
881
  • Calculus and Beyond Homework Help
Replies
8
Views
876
Replies
33
Views
3K
Replies
2
Views
897
  • Calculus and Beyond Homework Help
Replies
10
Views
2K
  • Calculus and Beyond Homework Help
Replies
3
Views
559
  • Calculus and Beyond Homework Help
Replies
18
Views
1K
Back
Top