MHB Convergence and existence of constants

Click For Summary
The discussion focuses on the convergence of the sequence \( \left( \binom{n}{m} n^{-m} \right) \) for a natural number \( m \). It is established that as \( n \) approaches infinity, the limit of this sequence converges to \( \frac{1}{m!} \). Participants confirm that there exist constants \( C_1 > 0 \) and \( C_2 > 0 \) such that \( C_1 n^m \leq \binom{n}{m} \leq C_2 n^m \) for sufficiently large \( n \). The importance of choosing \( \epsilon < \frac{1}{m!} \) to ensure \( C_1 \) remains positive is also highlighted. The conversation concludes with a consensus on the correctness of the findings.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $m$ be a natural number. I want to check the sequence $\left( \binom{n}{m} n^{-m}\right)$ as for the convergence and I want to show that there exist constants $C_1>0, C_2>0$ (independent of $n$) and a positive integer $n_0$ such that $C_1 n^m \leq \binom{n}{m} \leq C_2 n^m$ for each $n \geq n_0$.

We have that $\binom{n}{m} n^{-m}=\frac{n!}{m!(n-m)!} n^{-m}=\frac{1 \cdots (n-m) \cdot (n-(m-1)) \cdots n}{m!(n-m)!} n^{-m}=\frac{(n-m)! (n-(m-1) \cdots n)}{m!(n-m)!} n^{-m}=\frac{(n-(m-1)) \cdots n}{m!} n^{-m}$.

Is it right so far? If so, how can we find the limit of the last term? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

Let $m$ be a natural number. I want to check the sequence $\left( \binom{n}{m} n^{-m}\right)$ as for the convergence and I want to show that there exist constants $C_1>0, C_2>0$ (independent of $n$) and a positive integer $n_0$ such that $C_1 n^m \leq \binom{n}{m} \leq C_2 n^m$ for each $n \geq n_0$.

We have that $\binom{n}{m} n^{-m}=\frac{n!}{m!(n-m)!} n^{-m}=\frac{1 \cdots (n-m) \cdot (n-(m-1)) \cdots n}{m!(n-m)!} n^{-m}=\frac{(n-m)! (n-(m-1) \cdots n)}{m!(n-m)!} n^{-m}=\frac{(n-(m-1)) \cdots n}{m!} n^{-m}$.

Is it right so far? If so, how can we find the limit of the last term? (Thinking)
That is correct so far. You could continue like this (dividing each of the factors in the numerator by one of the $n$s in the denominator):
\[\frac{(n-(m-1)) \cdots n}{m!} n^{-m} = \frac1{m!}\frac{(n-(m-1)) \cdots (n-1)\cdot n}{n^m} = \frac1{m!}\left(1-\frac{m-1}n\right) \cdots \left(1-\frac1n\right).\]
Can you finish it from there?
 
Opalg said:
That is correct so far. You could continue like this (dividing each of the factors in the numerator by one of the $n$s in the denominator):
\[\frac{(n-(m-1)) \cdots n}{m!} n^{-m} = \frac1{m!}\frac{(n-(m-1)) \cdots (n-1)\cdot n}{n^m} = \frac1{m!}\left(1-\frac{m-1}n\right) \cdots \left(1-\frac1n\right).\]
Can you finish it from there?

Since $\lim_{n \to +\infty} \frac{x}{n}=0, \forall x \in [1,m-1]$, it follows that $\lim_{n \to +\infty} \binom{n}{m} n^{-m}=\frac{1}{m!}$, right?
 
evinda said:
Since $\lim_{n \to +\infty} \frac{x}{n}=0, \forall x \in [1,m-1]$, it follows that $\lim_{n \to +\infty} \binom{n}{m} n^{-m}=\frac{1}{m!}$, right?
Yes, that's right. It's the theorem that says that the limit of a product is the product of the limits. Here, you have a fixed finite number (namely $m-1$) of terms, each of which is converging to $1$, so their product also converges to $1$.
 
Opalg said:
Yes, that's right. It's the theorem that says that the limit of a product is the product of the limits. Here, you have a fixed finite number (namely $m-1$) of terms, each of which is converging to $1$, so their product also converges to $1$.

Yes! (Nod)

Since $\lim_{n \to +\infty} \binom{n}{m} n^{-m}=\frac{1}{m!}$, we have that $\forall \epsilon>0$, $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$,

$$\left| \binom{n}{m} n^{-m}-\frac{1}{m!}\right|< \epsilon \Rightarrow \frac{1}{m!}-\epsilon< \binom{n}{m} n^{-m}<\frac{1}{m!}+\epsilon \Rightarrow \left( \frac{1}{m!}-\epsilon\right) n^m< \binom{n}{m}< \left( \frac{1}{m!}+\epsilon\right)n^m$$

So like that, we have shown that there are constants $C_1>0, C_2>0$ and a natural number $n_0$ such that $C_1 n^m \leq \binom{n}{m} \leq C_2 n^m$ for each $n \geq n_0$, right? (Smile)
 
evinda said:
Yes! (Nod)

Since $\lim_{n \to +\infty} \binom{n}{m} n^{-m}=\frac{1}{m!}$, we have that $\forall \epsilon>0$, $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$,

$$\left| \binom{n}{m} n^{-m}-\frac{1}{m!}\right|< \epsilon \Rightarrow \frac{1}{m!}-\epsilon< \binom{n}{m} n^{-m}<\frac{1}{m!}+\epsilon \Rightarrow \left( \frac{1}{m!}-\epsilon\right) n^m< \binom{n}{m}< \left( \frac{1}{m!}+\epsilon\right)n^m$$

So like that, we have shown that there are constants $C_1>0, C_2>0$ and a natural number $n_0$ such that $C_1 n^m \leq \binom{n}{m} \leq C_2 n^m$ for each $n \geq n_0$, right? (Smile)
Good! :)

The only thing you have to be careful about is to choose $\epsilon < \frac1{m!}$ (otherwise $C_1$ would not be positive).
 
Opalg said:
Good! :)

The only thing you have to be careful about is to choose $\epsilon < \frac1{m!}$ (otherwise $C_1$ would not be positive).

I see... Thanks a lot... (Smile)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
32
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K