High School Convergence of a sequence of averages of a convergent sequence

Click For Summary
The discussion centers on the convergence of a sequence of averages derived from a convergent sequence. It establishes that if a sequence converges to a limit A, then the average of the first n terms also converges to A as n approaches infinity. The proof utilizes inequalities to show that the average remains within an epsilon distance from A, reinforcing the convergence. It further explores the implications if the sequence does not converge uniformly, leading to the conclusion that the average still converges to A. Ultimately, the thread emphasizes the relationship between the convergence of sequences and their averages.
Eclair_de_XII
Messages
1,082
Reaction score
91
TL;DR
Consider a sequence ##a_n## and for each ##n##, define:

##\alpha_n=\frac{1}{n}\sum_{i=1}^n a_i##

Prove that if ##a_n## converges to ##A##, then ##\alpha_n## converges to ##A##.
Let ##\epsilon>0##. Then there is an integer ##N>0## with the property that for any integer ##n\geq N##, ##|a_n-A|<\epsilon##, where ##A\in\mathbb{R}##.

If for all positive integers ##n##, it is the case that ##|a_n-A|<\epsilon##, then the following must hold:

\begin{eqnarray}
|\frac{1}{n}(a_1+\cdots+a_n)-A|&=&|\frac{1}{n}(a_1+\cdots+a_n)-\frac{1}{n}(A+\cdots+A)|\\
&\leq&\frac{1}{n}\sum_{i=1}^n|a_i-A|\\
&<&\frac{1}{n}\sum_{i=1}^n\epsilon\\
&=&\frac{1}{n}(n\epsilon)\\
&=&\epsilon
\end{eqnarray}

Now assume that this is not the case. Then there exists a finite set of integers ##I## s.t. if ##i\in I##, then ##|a_i-A|>|a_N-A|##. Denote ##M=\max\{|a_i-A|:i\in I\}##.

We prove that ##2\alpha_n## converges to ##2A##. Choose the integer ##N'## with the property that ##N'\geq\frac{M\cdot |I|}{\epsilon}##. Then whenever ##n\geq N'##:

\begin{eqnarray}
|\frac{1}{n}(a_1+\cdots+a_n)-\frac{1}{n}(A+\cdots+A)|&\leq&\frac{1}{n}\sum_{i=1}^n|a_i-A|\\
&=&\frac{1}{n}\sum_{i\in I} |a_i-A|+\frac{1}{n}\sum_{j\notin I}|a_j-A|\\
&<&\frac{|I|\cdot M}{N'}+\frac{1}{n}(n-|I|)\epsilon\\
&<&\epsilon+\epsilon
\end{eqnarray}

Since ##2\alpha_n## converges to ##2A##, it must be the case that ##\alpha_n## converges to ##A##.
 
Physics news on Phys.org
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K