B Convergence of a sequence of averages of a convergent sequence

Click For Summary
The discussion centers on the convergence of a sequence of averages derived from a convergent sequence. It establishes that if a sequence converges to a limit A, then the average of the first n terms also converges to A as n approaches infinity. The proof utilizes inequalities to show that the average remains within an epsilon distance from A, reinforcing the convergence. It further explores the implications if the sequence does not converge uniformly, leading to the conclusion that the average still converges to A. Ultimately, the thread emphasizes the relationship between the convergence of sequences and their averages.
Eclair_de_XII
Messages
1,082
Reaction score
91
TL;DR
Consider a sequence ##a_n## and for each ##n##, define:

##\alpha_n=\frac{1}{n}\sum_{i=1}^n a_i##

Prove that if ##a_n## converges to ##A##, then ##\alpha_n## converges to ##A##.
Let ##\epsilon>0##. Then there is an integer ##N>0## with the property that for any integer ##n\geq N##, ##|a_n-A|<\epsilon##, where ##A\in\mathbb{R}##.

If for all positive integers ##n##, it is the case that ##|a_n-A|<\epsilon##, then the following must hold:

\begin{eqnarray}
|\frac{1}{n}(a_1+\cdots+a_n)-A|&=&|\frac{1}{n}(a_1+\cdots+a_n)-\frac{1}{n}(A+\cdots+A)|\\
&\leq&\frac{1}{n}\sum_{i=1}^n|a_i-A|\\
&<&\frac{1}{n}\sum_{i=1}^n\epsilon\\
&=&\frac{1}{n}(n\epsilon)\\
&=&\epsilon
\end{eqnarray}

Now assume that this is not the case. Then there exists a finite set of integers ##I## s.t. if ##i\in I##, then ##|a_i-A|>|a_N-A|##. Denote ##M=\max\{|a_i-A|:i\in I\}##.

We prove that ##2\alpha_n## converges to ##2A##. Choose the integer ##N'## with the property that ##N'\geq\frac{M\cdot |I|}{\epsilon}##. Then whenever ##n\geq N'##:

\begin{eqnarray}
|\frac{1}{n}(a_1+\cdots+a_n)-\frac{1}{n}(A+\cdots+A)|&\leq&\frac{1}{n}\sum_{i=1}^n|a_i-A|\\
&=&\frac{1}{n}\sum_{i\in I} |a_i-A|+\frac{1}{n}\sum_{j\notin I}|a_j-A|\\
&<&\frac{|I|\cdot M}{N'}+\frac{1}{n}(n-|I|)\epsilon\\
&<&\epsilon+\epsilon
\end{eqnarray}

Since ##2\alpha_n## converges to ##2A##, it must be the case that ##\alpha_n## converges to ##A##.
 
Physics news on Phys.org