Convergence of a sequence of averages of a convergent sequence

Click For Summary
SUMMARY

The discussion centers on the convergence of a sequence of averages derived from a convergent sequence. It establishes that if a sequence \( a_n \) converges to a limit \( A \), then the average of the first \( n \) terms also converges to \( A \). The proof utilizes inequalities to demonstrate that the average remains within an arbitrary distance \( \epsilon \) from \( A \) for sufficiently large \( n \). Additionally, it concludes that if the average converges to \( 2A \), then the original sequence must converge to \( A \).

PREREQUISITES
  • Understanding of limits and convergence in real analysis
  • Familiarity with sequences and series
  • Knowledge of inequalities and their applications in proofs
  • Basic understanding of Cesàro summation
NEXT STEPS
  • Study the properties of Cesàro summation in detail
  • Explore the implications of convergence in sequences and series
  • Learn about the application of inequalities in mathematical proofs
  • Investigate advanced topics in real analysis, such as uniform convergence
USEFUL FOR

Mathematicians, students of real analysis, and educators seeking to deepen their understanding of convergence concepts and their proofs.

Eclair_de_XII
Messages
1,082
Reaction score
91
TL;DR
Consider a sequence ##a_n## and for each ##n##, define:

##\alpha_n=\frac{1}{n}\sum_{i=1}^n a_i##

Prove that if ##a_n## converges to ##A##, then ##\alpha_n## converges to ##A##.
Let ##\epsilon>0##. Then there is an integer ##N>0## with the property that for any integer ##n\geq N##, ##|a_n-A|<\epsilon##, where ##A\in\mathbb{R}##.

If for all positive integers ##n##, it is the case that ##|a_n-A|<\epsilon##, then the following must hold:

\begin{eqnarray}
|\frac{1}{n}(a_1+\cdots+a_n)-A|&=&|\frac{1}{n}(a_1+\cdots+a_n)-\frac{1}{n}(A+\cdots+A)|\\
&\leq&\frac{1}{n}\sum_{i=1}^n|a_i-A|\\
&<&\frac{1}{n}\sum_{i=1}^n\epsilon\\
&=&\frac{1}{n}(n\epsilon)\\
&=&\epsilon
\end{eqnarray}

Now assume that this is not the case. Then there exists a finite set of integers ##I## s.t. if ##i\in I##, then ##|a_i-A|>|a_N-A|##. Denote ##M=\max\{|a_i-A|:i\in I\}##.

We prove that ##2\alpha_n## converges to ##2A##. Choose the integer ##N'## with the property that ##N'\geq\frac{M\cdot |I|}{\epsilon}##. Then whenever ##n\geq N'##:

\begin{eqnarray}
|\frac{1}{n}(a_1+\cdots+a_n)-\frac{1}{n}(A+\cdots+A)|&\leq&\frac{1}{n}\sum_{i=1}^n|a_i-A|\\
&=&\frac{1}{n}\sum_{i\in I} |a_i-A|+\frac{1}{n}\sum_{j\notin I}|a_j-A|\\
&<&\frac{|I|\cdot M}{N'}+\frac{1}{n}(n-|I|)\epsilon\\
&<&\epsilon+\epsilon
\end{eqnarray}

Since ##2\alpha_n## converges to ##2A##, it must be the case that ##\alpha_n## converges to ##A##.
 
Physics news on Phys.org

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K