Convergence of series log(1-1/n^2)

  • Thread starter Thread starter Felipe Lincoln
  • Start date Start date
  • Tags Tags
    Convergence Series
Click For Summary
SUMMARY

The sum of the series ∑(n=2 to ∞) ln(1 - 1/n²) converges to -ln(2). This conclusion is reached by recognizing the series as a telescoping series, which can be expressed as ln(∏(n=2 to ∞) (n-1)(n+1)/n²). The product simplifies to 1/2, leading to the final result. The analysis confirms that working with products in this context is valid and effective.

PREREQUISITES
  • Understanding of logarithmic properties
  • Familiarity with telescoping series
  • Basic knowledge of infinite products
  • Concept of convergence in series
NEXT STEPS
  • Study the properties of telescoping series in depth
  • Learn about convergence tests for infinite series
  • Explore the relationship between logarithms and products
  • Investigate advanced techniques for evaluating infinite series
USEFUL FOR

Mathematicians, students studying calculus or analysis, and anyone interested in series convergence and logarithmic identities.

Felipe Lincoln
Gold Member
Messages
99
Reaction score
11

Homework Statement


Find the sum of ##\sum\limits_{n=2}^{\infty}\ln\left(1-\dfrac{1}{n^2}\right) ##

Homework Equations


No one.

The Attempt at a Solution


At first I though it as a telescopic serie:
##\sum\limits_{n=2}^{\infty}\ln\left(1-\dfrac{1}{n^2}\right) =\ln\left(\dfrac{3}{4}\right) + \ln\left(\dfrac{8}{9}\right) + \ln\left(\dfrac{15}{16}\right) + \dots < 0##
But it doesn't look like so.
we know from it's terms that ##s_n## is in the interval of ##(L, \ln\left(3/4\right)]##
 
Physics news on Phys.org
Felipe Lincoln said:

Homework Statement


Find the sum of ##\sum\limits_{n=2}^{\infty}\ln\left(1-\dfrac{1}{n^2}\right) ##

Homework Equations


No one.

The Attempt at a Solution


At first I though it as a telescopic serie:
##\sum\limits_{n=2}^{\infty}\ln\left(1-\dfrac{1}{n^2}\right) =\ln\left(\dfrac{3}{4}\right) + \ln\left(\dfrac{8}{9}\right) + \ln\left(\dfrac{15}{16}\right) + \dots < 0##
But it doesn't look like so.
we know from it's terms that ##s_n## is in the interval of ##(L, \ln\left(3/4\right)]##
You are right about its being a telescoping series. How can you factor ##1-\frac 1 {n^2}##?
 
Last edited:
Using basic property of logarithms you can find that it is equal to
$$\ln\prod_{n=2}^{\infty} \frac{(n-1)(n+1)}{n^2}$$

So you can work with that product instead and prove that the product is equal to ##\frac{1}{2}## so the limit is ##\ln\frac{1}{2}=-\ln2##

I know that usually is not a good idea to work with products but in this case it works..

Now that I see it again, this product is the product of two "telescopic" products ##\prod\frac{n-1}{n},\prod\frac{n+1}{n}##, so I guess the original series must be a sum of two telescopic series.
 
Last edited:

Similar threads

Replies
5
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K