Show that the given function is decreasing

  • #1
idobido
10
0
Homework Statement
show that the given function is decreasing.
Relevant Equations
derivative
induction
As a follow up for : https://www.physicsforums.com/threa...there-is-i-n-s-t-1-1-k-i-1-2-k-i-1-4.1054669/

show that ## \alpha\left(k\right)\ :=\ \left(1-\tfrac{1}{k}\right)^{\ln\left(2\right)k}-\left(1-\tfrac{2}{k}\right)^{\ln\left(2\right)k} ## is decreasing for ## k\in\left[3,\infty\right) ##

thing I've tried:
showing that first derivative is non-positive, but I've got complicated expression i cannot handle with (## k = x ##):

## \dfrac{\left(\frac{x-1}{x}\right)^{\ln\left(2\right)\,x}\,\left(\ln\left(2\right)\ln\left(\frac{x-1}{x}\right)\left(x-1\right)+\ln\left(2\right)\right)}{x-1}-\dfrac{\left(\frac{x-2}{x}\right)^{\ln\left(2\right)\,x}\,\left(\ln\left(2\right)\ln\left(\frac{x-2}{x}\right)\left(x-2\right)+2\ln\left(2\right)\right)}{x-2} ##

trying to compare
## \alpha\left(k\right)\ ## with ## \alpha\left(k+1\right)\ ##
also got complicated.
 
Physics news on Phys.org
  • #2
Set ##f(k) =\left(1-\dfrac{1}{k}\right)^{\log 2},## ##\varepsilon(k) =\dfrac{1}{k}## and ##g(k)=(f(k)-\varepsilon(k) )^{\log 2}## and show that
\begin{align*}
\dfrac{d}{dk}\left(f(k)^k-g(k)^k\right)&<0
\end{align*}
... and don't forget to write down your final calculation backward!
 
Last edited:
  • #3
did you notice that ##
g(k) = \left( \left(1 - \frac{1}{k}\right)^{\log 2} - \frac{1}{k} \right)^{\log 2} \neq \left(1 - \frac{2}{k}\right)^{\log 2}
## ?
 
  • #4
idobido said:
did you notice that ##
g(k) = \left( \left(1 - \frac{1}{k}\right)^{\log 2} - \frac{1}{k} \right)^{\log 2} \neq \left(1 - \frac{2}{k}\right)^{\log 2}
##
You are right, I overlooked that. So set ##f(k)=1-\dfrac{1}{k}## and ##g(k)=f(k)-\dfrac{1}{k}.## Shouldn't make a difference since we cancel ##k\log(2)## anyway.
 
  • #5
fresh_42 said:
You are right, I overlooked that. So set ##f(k)=1-\dfrac{1}{k}## and ##g(k)=f(k)-\dfrac{1}{k}.## Shouldn't make a difference since we cancel ##k\log(2)## anyway.
how does it cancelled i've got
##
\frac{d}{dk}\left( f(k)^k - g(k)^k \right) = \left( \ln f(k) + k \cdot \frac{1}{f(k)} \cdot f'(k) \right) \cdot f(k)^k - \left( \ln g(k) + k \cdot \frac{1}{g(k)} \cdot g'(k) \right) \cdot g(k)^k
##
 
  • #6
idobido said:
how does it cancelled i've got
##
\frac{d}{dk}\left( f(k)^k - g(k)^k \right) = \left( \ln f(k) + k \cdot \frac{1}{f(k)} \cdot f'(k) \right) \cdot f(k)^k - \left( \ln g(k) + k \cdot \frac{1}{g(k)} \cdot g'(k) \right) \cdot g(k)^k
##
You are thinking way too complicated. We want to show that
\begin{align*}
0&>\dfrac{d}{dk}\alpha(k) \\
0&>\dfrac{d}{dk}\left[\left(1-\dfrac{1}{k}\right)^{k\log 2}-\left(1-\dfrac{2}{k}\right)^{k\log 2}\right]\\
0&>\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)^{k\log 2}-\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)^{k\log 2}\\
0&>{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)-{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)\\
&\phantom{>}\ldots
\end{align*}
... and at the end of it: rewrite it backward.
 
  • #7
did you notice that ##
fresh_42 said:
You are thinking way too complicated. We want to show that
\begin{align*}
0&>\dfrac{d}{dk}\alpha(k) \\
0&>\dfrac{d}{dk}\left[\left(1-\dfrac{1}{k}\right)^{k\log 2}-\left(1-\dfrac{2}{k}\right)^{k\log 2}\right]\\
0&>\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)^{k\log 2}-\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)^{k\log 2}\\
0&>{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)-{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)\\
&\phantom{>}\ldots
\end{align*}
... and at the end of it: rewrite it backward.
i really can't understand why the last result is true, you are applying ##
\sqrt{k \cdot \log 2}
##
on both expressions inside the derivative brackets i.e. (before the derivative)? why is that true that the inequality will hold after the derivative?
 
  • #8
idobido said:
did you notice that ##

i really can't understand why the last result is true, you are applying ##
\sqrt{k \cdot \log 2}
##
on both expressions inside the derivative brackets i.e. (before the derivative)? why is that true that the inequality will hold after the derivative?

You are right. I made a mistake with the chain rule. Sorry.
 
  • #9
Note: I took a wrong shortcut with the derivative, so this is wrong. Corrected solution is on the way!

I think you can crank it out using calculus. Let:
$$f(x) = \big (\frac {x-1} x\big)^{ax} - \big (\frac {x-2} x\big)^{ax}$$Then$$f'(x) = a\ln\big (\frac {x-1} x\big)\big (\frac {x-1} x\big)^{ax}\big(\frac 1 {x^2}\big) - a\ln\big (\frac {x-2} x\big)\big (\frac {x-2} x\big)^{ax}\big(\frac 2 {x^2}\big)$$Looking for ##f'(x) = 0## gives$$\frac{\ln\big (\frac x {x-1} \big)}{\ln\big (\frac x {x-2} \big)} = 2\big (\frac{x-2}{x-1})^{ax}$$The left-hand side (for ##x \ge 3##) is an increasing function with a limit of ##\frac 1 2##. The right-hand side is increasing (for ##x \ge 3##) with a limit of ##1##. And, in any case, for ##a = \ln 2##, it is greater than ##\frac 1 2##.

This means that for ##a = \ln 2## the function has no turning points for ##x \ge 3##, hence is decreasing.
 
Last edited:
  • Like
Likes fresh_42
  • #10
I think I have managed to crank out a solution this time. The derivative in post #1 is correct. Using ##a = \ln(2)##:
$$f(x) =\big (\frac {x-1} x\big)^{ax} - \big (\frac {x-2} x\big)^{ax}$$Then$$f'(x) = a\big (\frac {x-1} x\big)^{ax}\bigg [\ln\big (\frac {x-1} x\big) + \frac 1 {x-1} \bigg ] - a\big (\frac {x-2} x\big)^{ax}\bigg [\ln\big (\frac {x-2} x\big) + \frac 2 {x-2} \bigg ]$$By estimating ##f(3)## and ##f(4)## it is enough to show that ##f'(x) \ne 0## for ##x > 3##. Then we can conclude that ##f## is decreasing for ##x > 3##. We have ##f'(x) = 0## iff:
$$\frac{\ln(x-1) - ln(x) + \frac 1 {x-1}}{\ln(x-2) - ln(x) + \frac 2 {x-2}} = \big (\frac{x-2}{x-1})^{ax}$$The RHS is increasing from greater than ##\frac 1 4## to ##1##. It is enough to show that the LHS is less than ##\frac 1 4## for ##x \ge 3##. Note that ##p(3) \approx 0.1## and ##\lim_{x \to \infty} LHS = \frac 1 4##. In other words, for ##x \ge 3## it is enough to show that:
$$\ln(x-2) - ln(x) + \frac 2 {x-2} > 4 \big [\ln(x-1) - ln(x) + \frac 1 {x-1}\big]$$The trick I used is to set ##y = \frac 1 x## and then we need to show that for ##0 < y < \frac 1 3## we have:
$$\ln(1 - 2y) + \frac{2y}{1-2y} > 4\big [ \ln(1-y) + \frac{y}{1-y} \big ]$$Using Taylor series we have:
$$\ln(1 - 2y) + \frac{2y}{1-2y} = \frac 1 2 (2y)^2 + \frac 2 3 (2y)^3 + \frac 3 4 (2y)^4 \dots$$$$4\big [\ln(1 - y) + \frac{y}{1-y} \big ] = \frac 1 2 (2y)^2 + \frac 2 3 (\frac 1 2)(2y)^3 + \frac 3 4 (\frac 1 4) (2y)^4 \dots$$And that's it, I hope!
 
  • Like
Likes fresh_42

What does it mean for a function to be decreasing?

When a function is decreasing, it means that as the input values increase, the output values decrease. In other words, the function is moving downwards on a graph from left to right.

How can I show that a given function is decreasing?

To show that a function is decreasing, you can take the derivative of the function and check if it is always negative. If the derivative is negative for all values of x, then the function is decreasing. Another way is to plot the function on a graph and observe if it is moving downwards from left to right.

What is the importance of knowing if a function is decreasing?

Knowing if a function is decreasing can help in understanding the behavior of the function and its relationship with the input and output values. It can also be useful in solving optimization problems and finding the maximum or minimum values of a function.

What are some common examples of decreasing functions?

Some common examples of decreasing functions include linear functions with a negative slope, exponential functions with a base less than 1, and trigonometric functions such as cosine and tangent.

Can a function be both increasing and decreasing?

No, a function cannot be both increasing and decreasing at the same time. However, there can be parts of a function where it is increasing and other parts where it is decreasing. These points of change are called critical points and can be found by setting the derivative of the function equal to zero.

Similar threads

  • Calculus and Beyond Homework Help
Replies
34
Views
2K
  • Calculus and Beyond Homework Help
Replies
3
Views
497
  • Calculus and Beyond Homework Help
Replies
1
Views
221
  • Calculus and Beyond Homework Help
Replies
8
Views
240
Replies
12
Views
883
  • Calculus and Beyond Homework Help
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
294
  • Calculus and Beyond Homework Help
Replies
6
Views
789
  • Calculus and Beyond Homework Help
Replies
16
Views
1K
  • Calculus and Beyond Homework Help
Replies
14
Views
1K
Back
Top