(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

The terms of convergent series [itex]\sum_{n=1}^\infty[/itex][itex]a_n[/itex] are non-negative. Let [itex]m_n[/itex] = max{[itex]a_n, a_{n+1}[/itex]}, [itex]n = 1,2,...[/itex]

Prove that [itex]\sum_{n=1}^\infty[/itex][itex]m_n[/itex] converges.

Show with a counter-example that the claim above doesn't necessarily hold if the assumption [itex]a_n[/itex][itex]\geq[/itex]0 for all n[itex]\geq[/itex]1 is dropped.

2. The attempt at a solution

I think I've solved the first claim using a theorem which claims if series converges then its partial sum converges as well. This holds assuming that I understood right the meaning of [itex]m_n[/itex]=max{[itex]a_n, a_{n+1}[/itex]}

I'm stuck with another one, frankly saying I couldn't find any counter-example.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Convergent series with non-negative terms, a counter-example with negative terms

**Physics Forums | Science Articles, Homework Help, Discussion**