MHB Convert r = 5sin(2θ) to rectangular coordinates

Click For Summary
The discussion focuses on converting the polar equation r = 5sin(2θ) to rectangular coordinates. The derived equation is (x² + y²)^(3/2) = 10xy. The conversion process involves multiplying both sides by r, substituting r² with x² + y², and using the identity for sin(2θ). Participants clarify the derivation of (x² + y²)^(3/2) and confirm the correctness of the steps taken. The final equation effectively represents the original polar equation in rectangular form.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
convert $$r=5\sin{2\theta}$$ to rectangular coordinates

the ans to this is $\left(x^2+y^2\right)^{3/2}=10xy$

however... multiply both sides by $r$ to get $r^2=5\cdot r \cdot \sin{2\theta}$

then substitute $r^2$ with $x^2+y^2$
and $\sin{2\theta}$ with $2\sin\theta\cos\theta$
and divide each side by $r$

$$\frac{x^2+y^2}{\sqrt{x^2+y^2}}=10xy$$

how is $\left(x^2+y^2\right)^{3/2}$ derived?
 
Mathematics news on Phys.org
Re: convert r=5sin2\theta to rectangular coordinates

$\dfrac{a^2}{\sqrt{a}}=a^{3/2}$ for every $a>0$.
 
Last edited:
Re: convert r=5sin2\theta to rectangular coordinates

karush said:
convert $$r=5\sin{2\theta}$$ to rectangular coordinates

the ans to this is $\left(x^2+y^2\right)^{3/2}=10xy$

however... multiply both sides by $r$ to get $r^2=5\cdot r \cdot \sin{2\theta}$

then substitute $r^2$ with $x^2+y^2$
and $\sin{2\theta}$ with $2\sin\theta\cos\theta$

That is:
$$x^2+y^2 = 5\cdot r \cdot 2\sin\theta\cos\theta$$
$$x^2+y^2 = 10 \cdot \sin\theta \cdot r\cos\theta$$
and divide each side by $r$

$$\frac{x^2+y^2}{\sqrt{x^2+y^2}}=10xy$$

how is $\left(x^2+y^2\right)^{3/2}$ derived?

Let's multiply by $r$ instead of divide by it.
$$(x^2+y^2) r = 10 \cdot r\sin\theta \cdot r\cos\theta$$
Now make the substitutions:
$$(x^2+y^2) \sqrt{x^2+y^2} = 10 \cdot y \cdot x$$
$$(x^2+y^2)^{3/2} = 10 xy$$
 
Re: convert r=5sin2\theta to rectangular coordinates

I :)should of seen that...

at least my basic steps were ok..
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K