Converting an expression of a particular k-mode to the spatial domain

ian_dsouza
Messages
44
Reaction score
3
Homework Statement
This is a problem in cosmology but I'll boil it down to the math. $n(\vec{x})$ is the (spatial) number density of particles. By the Fourier transform, $$n(\vec{x}) = \int\mathrm{d}^3k\ n_\vec{k}e^{i\vec{k}\cdot\vec{x}}$$. Also, $a(\vec{x})$ is the field representing the particle (a concept stemming from quantum field theory). By the Fourier transform, $$a(\vec{x}) = \int\mathrm{d}^3k\ a(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$$.



It is known that $$n_\vec{k} = \omega a^2(\vec{k})$$, where $$\omega = \frac{k}{R}$$ and $R$ is a function of time only. I want to find an expression for $n(\vec{x})$ in terms of $a(\vec{x})$ and I was wondering if someone could help me out.
Relevant Equations
$$n(\vec{x}) = \int\mathrm{d}^3k\ n_\vec{k}e^{i\vec{k}\cdot\vec{x}}$$
$$a(\vec{x}) = \int\mathrm{d}^3k\ a(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$$
$$n_\vec{k} = \omega a^2(\vec{k})$$
$$\omega = \frac{k}{R}$$
$$n_\vec{k} = \omega a^2(\vec{k})\tag{1}$$
One way is to write the inverse Fourier transforms of the terms above. So, eqn (1) becomes
$$\int\mathrm{d}^3x\ n(\vec{x})e^{-i\vec{k}\cdot\vec{x}} = \omega \int\mathrm{d}^3x^\prime\ a(\vec{x^\prime})e^{-i\vec{k}\cdot\vec{x^\prime}} \int\mathrm{d}^3x^{\prime\prime}\ a(\vec{x^{\prime\prime}})e^{-i\vec{k}\cdot\vec{x^{\prime\prime}}}$$
But I don't know how to proceed from here.

On the other hand, I could multiply both sides of eqn (1) by $$e^{i\vec{k}\cdot\vec{x}}e^{i\vec{k^\prime}\cdot\vec{x}}$$ and first writing $$a^2(\vec{k}) = a(\vec{k})a(\vec{k^\prime})$$ (don't know if this is right though).
$$n_\vec{k}e^{i\vec{k}\cdot\vec{x}}e^{i\vec{k^\prime}\cdot\vec{x}} = \omega a(\vec{k})a(\vec{k^\prime})e^{i\vec{k}\cdot\vec{x}}e^{i\vec{k^\prime}\cdot\vec{x}}$$
Integrating with respect to $\vec{k}$ and $\vec{k^\prime}$
$$\int\mathrm{d}^3k\ n_\vec{k}e^{i\vec{k}\cdot\vec{x}}\int\mathrm{d}^3k^\prime\ e^{i\vec{k^\prime}\cdot\vec{x}} = \omega \int\mathrm{d}^3k\ a(\vec{k})e^{i\vec{k}\cdot\vec{x}}\int\mathrm{d}^3k^\prime\ a(\vec{k^\prime})e^{i\vec{k^\prime}\cdot\vec{x}}$$
$$n(\vec{x})\delta^3({\vec{x}}) = \omega a^2(\vec{x})$$
But this isn't the answer I am looking for either and I suspect I am doing something wrong.
 
Physics news on Phys.org
The inverse Fourier transform of a product is a convolution.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top