Converting an expression of a particular k-mode to the spatial domain

Click For Summary
SUMMARY

The discussion focuses on converting the expression of a particular k-mode, represented by the equation $$n_\vec{k} = \omega a^2(\vec{k})$$, into the spatial domain using inverse Fourier transforms. Participants explore various methods, including integrating terms and manipulating the equation through multiplication by exponential functions. The challenge lies in correctly applying the inverse Fourier transform, particularly recognizing that the inverse Fourier transform of a product results in a convolution. The conversation highlights the complexities involved in transitioning from frequency to spatial representations in mathematical physics.

PREREQUISITES
  • Understanding of Fourier transforms and their properties
  • Familiarity with k-space and spatial domain concepts
  • Knowledge of convolution operations in mathematical analysis
  • Basic principles of mathematical physics related to wave functions
NEXT STEPS
  • Study the properties of inverse Fourier transforms in detail
  • Learn about convolution theorem applications in signal processing
  • Explore mathematical techniques for manipulating exponential functions in integrals
  • Investigate the implications of k-space representations in quantum mechanics
USEFUL FOR

Mathematicians, physicists, and engineers working with wave functions, signal processing, or any field requiring the conversion between frequency and spatial domains will benefit from this discussion.

ian_dsouza
Messages
44
Reaction score
3
Homework Statement
This is a problem in cosmology but I'll boil it down to the math. $n(\vec{x})$ is the (spatial) number density of particles. By the Fourier transform, $$n(\vec{x}) = \int\mathrm{d}^3k\ n_\vec{k}e^{i\vec{k}\cdot\vec{x}}$$. Also, $a(\vec{x})$ is the field representing the particle (a concept stemming from quantum field theory). By the Fourier transform, $$a(\vec{x}) = \int\mathrm{d}^3k\ a(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$$.



It is known that $$n_\vec{k} = \omega a^2(\vec{k})$$, where $$\omega = \frac{k}{R}$$ and $R$ is a function of time only. I want to find an expression for $n(\vec{x})$ in terms of $a(\vec{x})$ and I was wondering if someone could help me out.
Relevant Equations
$$n(\vec{x}) = \int\mathrm{d}^3k\ n_\vec{k}e^{i\vec{k}\cdot\vec{x}}$$
$$a(\vec{x}) = \int\mathrm{d}^3k\ a(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$$
$$n_\vec{k} = \omega a^2(\vec{k})$$
$$\omega = \frac{k}{R}$$
$$n_\vec{k} = \omega a^2(\vec{k})\tag{1}$$
One way is to write the inverse Fourier transforms of the terms above. So, eqn (1) becomes
$$\int\mathrm{d}^3x\ n(\vec{x})e^{-i\vec{k}\cdot\vec{x}} = \omega \int\mathrm{d}^3x^\prime\ a(\vec{x^\prime})e^{-i\vec{k}\cdot\vec{x^\prime}} \int\mathrm{d}^3x^{\prime\prime}\ a(\vec{x^{\prime\prime}})e^{-i\vec{k}\cdot\vec{x^{\prime\prime}}}$$
But I don't know how to proceed from here.

On the other hand, I could multiply both sides of eqn (1) by $$e^{i\vec{k}\cdot\vec{x}}e^{i\vec{k^\prime}\cdot\vec{x}}$$ and first writing $$a^2(\vec{k}) = a(\vec{k})a(\vec{k^\prime})$$ (don't know if this is right though).
$$n_\vec{k}e^{i\vec{k}\cdot\vec{x}}e^{i\vec{k^\prime}\cdot\vec{x}} = \omega a(\vec{k})a(\vec{k^\prime})e^{i\vec{k}\cdot\vec{x}}e^{i\vec{k^\prime}\cdot\vec{x}}$$
Integrating with respect to $\vec{k}$ and $\vec{k^\prime}$
$$\int\mathrm{d}^3k\ n_\vec{k}e^{i\vec{k}\cdot\vec{x}}\int\mathrm{d}^3k^\prime\ e^{i\vec{k^\prime}\cdot\vec{x}} = \omega \int\mathrm{d}^3k\ a(\vec{k})e^{i\vec{k}\cdot\vec{x}}\int\mathrm{d}^3k^\prime\ a(\vec{k^\prime})e^{i\vec{k^\prime}\cdot\vec{x}}$$
$$n(\vec{x})\delta^3({\vec{x}}) = \omega a^2(\vec{x})$$
But this isn't the answer I am looking for either and I suspect I am doing something wrong.
 
Physics news on Phys.org
The inverse Fourier transform of a product is a convolution.
 

Similar threads

Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
27
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K