MHB Converting between arcseconds and radians

  • Thread starter Thread starter viawilli
  • Start date Start date
  • Tags Tags
    Radians
Click For Summary
To convert 0.05 arcseconds into radians, the formula used is θ'' = θ'' × (1'/60'') × (1°/60') × (π rad/180°), resulting in a conversion factor of π/648000. This calculation yields 0.05 arcseconds as approximately 2.42406841 × 10^-7 radians. Additionally, online tools like Convertin can facilitate quick unit conversions. Understanding the relationship between arcseconds, arcminutes, degrees, and radians is essential for accurate conversions. This method provides a straightforward approach to converting angular measurements.
viawilli
Messages
1
Reaction score
0
Hi i need to convert 0.05 arcseconds into radians and am not sure where to start any help is appreciated. thanks
 
Mathematics news on Phys.org
You could use:

$$\theta''=\theta''\cdot\frac{1'}{60''}\cdot\frac{1^{\circ}}{60'}\cdot\frac{\pi\text{ rad}}{180^{\circ}}=\frac{\pi}{648000}\theta\text{ rad}$$

Do you see how I used the fact that there are 60 arc seconds per 1 arc minute, 60 arc minutes per degree and 180 degrees per $\pi$ radians to construct 3 fractions all equal to 1 which I then multiplied with the original angle $\theta$, given in arc seconds, to obtain a conversion factor of $$\frac{\pi}{648000}$$?
 
You convert arcseconds and radians by using the specific formula. Like
0.05 arcseconds=2.42406841 × 10-7 radians.
The above is one method to convert, another method is you can also use convertin, which is used to convert the units online. By this you can quickly perform the conversion problems.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 25 ·
Replies
25
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K