MHB Converting r=4+4cos(theta) into rectangular form

  • Thread starter Thread starter Raerin
  • Start date Start date
  • Tags Tags
    Form Rectangular
AI Thread Summary
To convert the polar equation r=4+4cos(θ) into rectangular form, start with the relationships r²=x²+y² and rcos(θ)=x. The initial equation can be rewritten as √(x²+y²) = 4 + 4(x/√(x²+y²)). This leads to the equation x²+y² = 4√(x²+y²) + 4x after squaring both sides. The conversion process is confirmed to be correct, resulting in a valid rectangular form.
Raerin
Messages
46
Reaction score
0
So how do I convert r=4+4cos(theta) into rectangular form?
I know that r^2 = x^2+y^2 and that rcos(theta) = x.

Would the start of the solution be:

sqrt(x^2 + y^2) = 4+4x

If yes, I don't know where to go from there.
 
Mathematics news on Phys.org
Raerin said:
So how do I convert r=4+4cos(theta) into rectangular form?
I know that r^2 = x^2+y^2 and that rcos(theta) = x.

Would the start of the solution be:

sqrt(x^2 + y^2) = 4 +4x

If yes, I don't know where to go from there.

Almost. You have made a small mistake.

We can write $r\cos(\theta) = x$ as
$$\cos(\theta) = \frac x r \qquad\qquad (1)$$

So you should have
$$\sqrt{x^2 + y^2} = 4 + 4 \frac{x}{\sqrt{x^2 + y^2}}$$
This is a correct rectangular form.
That's it. You are done! ;)
To make it a little easier, we can also do (using $(1)$):
\begin{array}{}
r&=&4+4\cos(\theta) \\
r&=&4+4\frac x r \\
r^2&=&4r + 4x \\
x^2+y^2&=&4\sqrt{x^2+y^2} + 4x
\end{array}
 
Hello, Raerin!

\text{Convert }\,r\:=\:4+4\cos\theta\,\text{ to rectangular form.}
I would do it like this . . .\text{We have: }\:r \:=\:4(1 + \cos\theta)

\text{Multiply by }r\!:\;r^2 \:=\:4(r + r\cos\theta)

\text{Convert: }\:x^2+y^2 \:=\:4\left(\sqrt{x^2+y^2} + x\right)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top