MHB Converting r=4+4cos(theta) into rectangular form

  • Thread starter Thread starter Raerin
  • Start date Start date
  • Tags Tags
    Form Rectangular
Raerin
Messages
46
Reaction score
0
So how do I convert r=4+4cos(theta) into rectangular form?
I know that r^2 = x^2+y^2 and that rcos(theta) = x.

Would the start of the solution be:

sqrt(x^2 + y^2) = 4+4x

If yes, I don't know where to go from there.
 
Mathematics news on Phys.org
Raerin said:
So how do I convert r=4+4cos(theta) into rectangular form?
I know that r^2 = x^2+y^2 and that rcos(theta) = x.

Would the start of the solution be:

sqrt(x^2 + y^2) = 4 +4x

If yes, I don't know where to go from there.

Almost. You have made a small mistake.

We can write $r\cos(\theta) = x$ as
$$\cos(\theta) = \frac x r \qquad\qquad (1)$$

So you should have
$$\sqrt{x^2 + y^2} = 4 + 4 \frac{x}{\sqrt{x^2 + y^2}}$$
This is a correct rectangular form.
That's it. You are done! ;)
To make it a little easier, we can also do (using $(1)$):
\begin{array}{}
r&=&4+4\cos(\theta) \\
r&=&4+4\frac x r \\
r^2&=&4r + 4x \\
x^2+y^2&=&4\sqrt{x^2+y^2} + 4x
\end{array}
 
Hello, Raerin!

\text{Convert }\,r\:=\:4+4\cos\theta\,\text{ to rectangular form.}
I would do it like this . . .\text{We have: }\:r \:=\:4(1 + \cos\theta)

\text{Multiply by }r\!:\;r^2 \:=\:4(r + r\cos\theta)

\text{Convert: }\:x^2+y^2 \:=\:4\left(\sqrt{x^2+y^2} + x\right)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top