Converting r=4+4cos(theta) into rectangular form

  • Context: MHB 
  • Thread starter Thread starter Raerin
  • Start date Start date
  • Tags Tags
    Form Rectangular
Click For Summary
SUMMARY

The conversion of the polar equation r=4+4cos(θ) into rectangular form involves utilizing the relationships r² = x² + y² and rcos(θ) = x. The correct transformation leads to the equation x² + y² = 4√(x² + y²) + 4x. This method effectively simplifies the polar equation into a rectangular format, confirming the solution's accuracy.

PREREQUISITES
  • Understanding of polar coordinates and their conversion to rectangular coordinates
  • Familiarity with trigonometric identities, specifically rcos(θ) = x
  • Knowledge of the Pythagorean theorem in the context of coordinate systems
  • Basic algebraic manipulation skills for handling equations
NEXT STEPS
  • Study the derivation of polar to rectangular coordinate transformations
  • Learn about the implications of polar equations in graphing
  • Explore advanced topics in trigonometric identities and their applications
  • Investigate the use of parametric equations in calculus
USEFUL FOR

Students and educators in mathematics, particularly those focusing on geometry and trigonometry, as well as anyone interested in the applications of polar coordinates in various mathematical contexts.

Raerin
Messages
46
Reaction score
0
So how do I convert r=4+4cos(theta) into rectangular form?
I know that r^2 = x^2+y^2 and that rcos(theta) = x.

Would the start of the solution be:

sqrt(x^2 + y^2) = 4+4x

If yes, I don't know where to go from there.
 
Mathematics news on Phys.org
Raerin said:
So how do I convert r=4+4cos(theta) into rectangular form?
I know that r^2 = x^2+y^2 and that rcos(theta) = x.

Would the start of the solution be:

sqrt(x^2 + y^2) = 4 +4x

If yes, I don't know where to go from there.

Almost. You have made a small mistake.

We can write $r\cos(\theta) = x$ as
$$\cos(\theta) = \frac x r \qquad\qquad (1)$$

So you should have
$$\sqrt{x^2 + y^2} = 4 + 4 \frac{x}{\sqrt{x^2 + y^2}}$$
This is a correct rectangular form.
That's it. You are done! ;)
To make it a little easier, we can also do (using $(1)$):
\begin{array}{}
r&=&4+4\cos(\theta) \\
r&=&4+4\frac x r \\
r^2&=&4r + 4x \\
x^2+y^2&=&4\sqrt{x^2+y^2} + 4x
\end{array}
 
Hello, Raerin!

\text{Convert }\,r\:=\:4+4\cos\theta\,\text{ to rectangular form.}
I would do it like this . . .\text{We have: }\:r \:=\:4(1 + \cos\theta)

\text{Multiply by }r\!:\;r^2 \:=\:4(r + r\cos\theta)

\text{Convert: }\:x^2+y^2 \:=\:4\left(\sqrt{x^2+y^2} + x\right)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K