Convolution of iid non central Chi square and normal distribution

Click For Summary
SUMMARY

The discussion focuses on the convolution of independent identically distributed (iid) non-central Chi-square and normal distributions. The recommended approach involves using the moment generating function (MGF) of both distributions, multiplying them to obtain the combined MGF, and then deriving the probability density function (PDF) from the characteristic function. Additionally, term-by-term integration and Taylor series expansion are suggested for approximating the PDF when analytic solutions are complex. Proper normalization of the approximated PDF is crucial to maintain its properties.

PREREQUISITES
  • Understanding of non-central Chi-square distribution
  • Familiarity with normal distribution properties
  • Knowledge of moment generating functions (MGF)
  • Experience with Fourier transforms and Taylor series
NEXT STEPS
  • Research the properties of non-central Chi-square distribution
  • Learn about moment generating functions and their applications
  • Study Fourier transform techniques for probability distributions
  • Explore numerical methods for approximating probability density functions
USEFUL FOR

Researchers in statistics, mathematicians working on probability theory, and anyone involved in advanced statistical modeling or distribution analysis.

mmmly2002
Messages
2
Reaction score
0
Hi, I am doing research and I am stuck at this point I need help to convolute iid non central chi-square with normal distribution.
 
Physics news on Phys.org
Hey mmmly2002 and welcome to the forums.

Can you elaborate on what part you are stuck on? Have you set up the convolution equation? What approaches have you tried? Straight convolution? MGF approach?
 
Thank you for your reply...I really appreciate your help. actually the approach that I used is to take the characteristic function for both non central chi square and normal distribution, then multiply both CF. afetr that take the inverse Fourier transform for the result their production. but I could not solve the inverse Fourier transform for their production and I got stuck at this point...

Thanks again for your help.
 
Are you calculated the PDF of the addition of the two variables?

If so what I recommend is to get the MGF by multiplying the two MGF's (assuming they are independent) and then using the characteristic function for your combined MGF to get the PDF.

Also don't rule out using a term by term integration as opposed to doing something analytically.

If the analytic distribution is extremely complicated and can't easily be expressed with the elementary functions, then what you can do is basically look at the order of the expanding taylor series centred about some point and then cut off the series when the error term (in terms of its order) is large enough.

If you want to do strict calculations, then get an approximation with the right error properties over the domain of the PDF and use that.

You should be able to pick enough terms to reduce the order and you can program a computer to calculate the first n terms and throw them in an array.

But if you use an approximated PDF, make sure you "re-normalize" it so that it has the proper properties of a PDF.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K