I Coord Transform in de Sitter Space: Phys Significance &Linearity?

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
Can one derive a coordinate transformation for the de Sitter space from its invariant interval akin to the Lorentz Transform in Minkowski Space?
Could one derive a set of coordinate transformations that transforms events between different reference frames in the de Sitter metric using the invariant line element, similar to how the Lorentz Transformations leave the line element of the Minkowski metric invariant? Would these coordinate transforms be physically significant?

I understand that the concept of reference frames and their coordinate systems works differently in GR than in the flat spacetime of SR, but given that the de Sitter Metric is maximally symmetric, I was wondering if this would be possible and perhaps even physically meaningful.

For instance, an axiom used in deriving the Lorentz Transformations is that $x=\pm ct$. In de Sitter space, the invariant quantity would instead be $r=\pm \left(1-\frac{r^2}{\alpha^2}\right)ct$. Could this be used to derive a coordinate transform and would it have any physical significance?

Also, if this transform can be derived, would it be linear? I would imagine it is due to the symmetry in the metric, and it would make deriving the transformations much easier, but I'm not absolutely sure since $g_{rr}$ and $g_{tt}$ depend on $r$.
 
Physics news on Phys.org
Sciencemaster said:
I understand that the concept of reference frames and their coordinate systems works differently in GR than in the flat spacetime of SR
The concept of "reference frame" that I suspect you are using, namely a global inertial frame in which a family of observers at rest in the frame (i.e., with constant spatial coordinates) are (a) at rest relative to each other, and (b) all in free fall, does not exist in any curved spacetime. That includes de Sitter spacetime.

Sciencemaster said:
given that the de Sitter Metric is maximally symmetric, I was wondering if this would be possible
Not the way I suspect you are thinking. See above.
 
  • Like
Likes Dale, vanhees71 and topsquark
Sciencemaster said:
Could one derive a set of coordinate transformations that transforms events between different reference frames coordinate charts in the de Sitter metric using the invariant line element
With the correction I made above (see the strikethrough and the bolded text), you can do it in any curved spacetime. In fact, that is the definition of a valid coordinate transformation: that it leaves the line element invariant. But no coordinate chart on a curved spacetime can correspond to a global inertial reference frame.
 
  • Like
Likes Dale and vanhees71
Yes, but maybe not in the way you are imagining. The particular coordinate form of the line element is not as important as the geometry of the spacetime and the symmetries of de Sitter space are generally not very transparent from the typical coordinate choices.

By definition, symmetry transformations are those that leave the metric tensor invariant. In other words, they are maps ##f: M \to M## such that the pullback of the metric is the metric itself ##f^*g = g##. After making any such transformation, reintroducing coordinates in the same way as before will of course lead to the same coordinate form for the line element.

In general, the ##n##-dimensional de Sitter space ##dS_n## can be embedded into ##n+1##-dimensional Minkowski space as Minkowski equivalent of a sphere in Euclidean space and the symmetry transformations may be inferred from there.
 
  • Like
Likes Dale and vanhees71
Sciencemaster said:
Can one derive a coordinate transformation for the de Sitter space from its invariant interval akin to the Lorentz Transform in Minkowski Space?
The group of transformations is ##SO(4,1)##. There is extensive literature concerning de Sitter (special) relativity, which may interest you. :oldsmile:
 
Just to point out that this
strangerep said:
The group of transformations is ##SO(4,1)##.
is what follows from this
Orodruin said:
In general, the n-dimensional de Sitter space dSn can be embedded into n+1-dimensional Minkowski space as Minkowski equivalent of a sphere in Euclidean space and the symmetry transformations may be inferred from there.
The SO(n,1) transformations are the Lorentz transformations in the embedding Minkowski space.
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top