Copper Losses in an Electric Generator

AI Thread Summary
Calculating heating losses in an electric generator requires understanding both the internal resistance of the generator's windings and the load resistance. The power output is not solely determined by Ohm's law; instead, it involves the interaction of voltage, current, and phase relationships in AC circuits. Resistive losses occur due to voltage drops across conductors, while additional losses arise from reactive power in AC systems. The voltage output of a generator is influenced by factors such as coil turns, magnetic field strength, and the rate of change of the magnetic field. Properly distinguishing between load resistance and generator resistance is crucial for accurate efficiency calculations.
mudmucker
Messages
5
Reaction score
3
When I use Ohm's law and other related equations to calculate the heating losses in a generator I get the power output of the generator. I assume I'm using the equations wrong, and I was hoping that someone could help set me strait. I think what I would like to know is what determines the voltage and current of a generator and why it isn't directly related to V=I*R; but that might not be the right question.

Just as an example if I take this generator 350W at 24V gives us about 14.6A (P=I*V). That means the internal resistance of the motor is 1.6 Ohms (V=I*R). What I've always used for calculating power loss in a wire is P=V*I^2; which gives us 350W. That would mean that the efficiency of a generator is 50% but I've always understood that under optimal circumstances generators operate closer to 90% (just talking about the efficiency of mechanical rotation to electrical power, not including the efficiency of producing that mechanical rotation). I'm not surprised that the values are coming out the same since I'm using the same equations in reverse.

Thanks for the help.
 
Engineering news on Phys.org
The R you're calculating there is the load on the generator, not the generator's winding resistance. As if you had a 24V, 350W light bulb connected to the generator; then the light bulb would have those values. There is nothing in your problem description that gives us any information about generator's windings.
 
Well first of all, every generator except the Faraday disc/homopolar one is an AC generator not DC. DC only arises after rectification and sufficient smoothing of the AC ripple voltage. All generators use rotating magnets and coils either way you slice them, that means you need to calculate the AC rms output which is the actual output of a generator since it outputs either a sine wave or in older DC style dynamos it outputs a pulsating DC which is essentially a half period sine.
P=I*V is only true for instantaneous power at any given moment and also true only if your voltage and current waveforms are in phase.
If their not in phase you have to additionally multiply by the cosine.

See the link
https://www.electronicshub.org/power-formula/

But overall there are two types of losses in an AC circuit, one is the same as in DC circuit and that is resistive loss , where you form a voltage drop across a piece of conductor that manifests as heat and the other loss is purely AC phenomena - reactive power/radiation.
Every time you have a time varying current you charge and discharge capacitance and inductance along the way , and every circuit has both to varying degrees.

Now in simple terms the way to know the resistive loss of a generator's winding is to measure the resistance of the winding and then to know the RMS voltage across it and out of that one can calculate how much power is wasted as heat. You have to use Ohm's law and get the current through the winding then use the voltage drop across it and multiply that by the current and you will get the power that the winding consumes as a resistor that manifests as heat

But a hint is this - it's a small amount compared to the total power output, otherwise your 350w generator would become a heating element and burn up quickly.
 
mudmucker said:
Just as an example if I take this generator 350W at 24V gives us about 14.6A (P=I*V). That means the internal resistance of the motor is 1.6 Ohms (V=I*R). What I've always used for calculating power loss in a wire is P=V*I^2; which gives us 350W.
Your calculations assume the whole 24V is applied across the internal resistance. That is true only if the generator is short circuited. Instead, think of the circuit below. R1 is the internal resistance and R2 is the load resistance. Think of a light bulb for example. Now if R2 is much greater than R1, then most of the voltage drop and power consumption will be across R2, not R1.

Ideally, the internal resistance R1 would be zero and the efficiency of the generator would be 100%. But in the non-ideal case, we can make R1 as small as possible.
1667212891001.png
 
  • Like
Likes SammyS and artis
Thank you all! I knew that I was missing something.

The separation of load resistance from generator resistance was very helpful. I'm also thinking of voltage change in the generator as happening in two parts. There's the main voltage gain due to the generator operating, and then there is a small voltage drop in the generator due to resistive losses in the windings; with the sum of those two being the external voltage gain of the generator.
 
  • Like
Likes DaveE, artis and anorlunda
mudmucker said:
Thank you all! I knew that I was missing something.

The separation of load resistance from generator resistance was very helpful. I'm also thinking of voltage change in the generator as happening in two parts. There's the main voltage gain due to the generator operating, and then there is a small voltage drop in the generator due to resistive losses in the windings; with the sum of those two being the external voltage gain of the generator.
And just to add, the voltage that appears across any of the generator coils (for a free standalone generator not connected to grid) is dependent on the turns count of the coil, the max B field strength through the coil and the rate of change of that B field. The faster the field changes the higher the voltage will be.
That is why if you spin your generator faster you get higher output voltage as well as frequency.
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top