MHB Corollary 3.1.3 - Berrick and Keating - Noetherian Modules

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book "An Introduction to Rings and Modules with K-theory in View" by A.J. Berrick and M.E. Keating ... ...

I am currently focused on Chapter 3; Noetherian Rings and Polynomial Rings.

I need help with the proof of Corollary 3.1.3.

The statement of Corollary 3.1.3 reads as follows (page 110):https://www.physicsforums.com/attachments/4875Now, Berrick and Keating give no proof of this Corollary: presumably they think the proof is simple and obvious. Maybe it is ... but I need help in formulating a formal and rigorous proof ... can someone please help ...Because we are dealing with a Corollary to Proposition 3.1.2 readers of this post need the text of that Proposition. Proposition 3.1.2 and its proof are as follows:https://www.physicsforums.com/attachments/4876
https://www.physicsforums.com/attachments/4877Hope someone can help with the proof of Corollary 3.1.3 ... ...

Peter
 
Physics news on Phys.org
Suppose $\{m_1,\dots,m_k\}$ generate $M$, and $\{n_1,\dots,n_r\}$ generate $N$.

Then $\{(m_1,0),\dots,(m_k,0),(0,n_1),\dots,(0,n_r)\}$ generate $M \oplus N$.

For example, $\{(1,0),(0,1)\}$ generates $\Bbb Z \oplus \Bbb Z$.
 
Deveno said:
Suppose $\{m_1,\dots,m_k\}$ generate $M$, and $\{n_1,\dots,n_r\}$ generate $N$.

Then $\{(m_1,0),\dots,(m_k,0),(0,n_1),\dots,(0,n_r)\}$ generate $M \oplus N$.

For example, $\{(1,0),(0,1)\}$ generates $\Bbb Z \oplus \Bbb Z$.
Oh OK ... thanks Deveno ... clear now ... appreciate your help ...

BUT ... clear as it is ... it does not seem to be a Corollary of Proposition 3.1.2 ... how does it depend on Proposition 3.1.2

Can you help with the second statement of the Corollary?

Peter
 
Last edited:
For any direct sum $M \oplus N$ we clearly have the short exact sequence:

$0 \to M \to M \oplus N \to N \to 0$,

where $\alpha: M \to M \oplus N$ is given by $\alpha(m) = (m,0_N)$

and $\beta: M\oplus N \to N$ is given by $\beta(m,n) = n$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top