Graduate Correlation functions in an interacting theory

Click For Summary
The discussion centers on the time-correlation function in a specific interacting theory involving fields φ and χ. It is established that the correlation function ##\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle## can be expressed in terms of a vacuum correlation function and an interaction term. The key point is that the vacuum expectation value ##\langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle## equals zero due to the presence of only one field φ, resulting in either a single creation or annihilation operator. This conclusion is crucial for understanding the behavior of the correlation function in the context of the given theory. The analysis highlights the implications of field interactions on correlation functions in quantum field theory.
spaghetti3451
Messages
1,311
Reaction score
31
Given the theory

$$\mathcal{L}=\frac{1}{2}(\partial_{\mu}\phi)^{2}-\frac{1}{2}m_{\phi}^{2}\phi^{2}+\partial_{\mu}\chi^{*}\partial^{\mu}\chi-m_{\chi}^{2}\chi^{*}\chi+\mathcal{L}_{\text{int}},\qquad \mathcal{L}_{\text{int}}=-g\phi\chi^{*}\chi,$$

the time-correlation function ##\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle## is given by

$$\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle = \langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle -ig \int d^{4}x\ \langle 0 | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})\phi(x)\chi^{*}(x)\chi(x)|0\rangle + \mathcal{O}(g^{2})$$

---

Is ##\langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle = 0##?
 
failexam said:
Given the theory

$$\mathcal{L}=\frac{1}{2}(\partial_{\mu}\phi)^{2}-\frac{1}{2}m_{\phi}^{2}\phi^{2}+\partial_{\mu}\chi^{*}\partial^{\mu}\chi-m_{\chi}^{2}\chi^{*}\chi+\mathcal{L}_{\text{int}},\qquad \mathcal{L}_{\text{int}}=-g\phi\chi^{*}\chi,$$

the time-correlation function ##\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle## is given by

$$\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle = \langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle -ig \int d^{4}x\ \langle 0 | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})\phi(x)\chi^{*}(x)\chi(x)|0\rangle + \mathcal{O}(g^{2})$$

---

Is ##\langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle = 0##?
Yes since there is only one field \phi so we have either a single creation operator or a single annihilation operator.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K