cborse
Homework Statement
##X##, ##Y## and ##Z## are uncorrelated random variables with variances \sigma^{2}_{X}, \sigma^{2}_{Y} and \sigma^{2}_{Z}, respectively. ##U=Z+X## and ##V=Z+Y##. Find \rho_{UV}.
Homework Equations
\rho_{UV}=\frac{Cov(U,V)}{\sqrt{Var(U)Var(V)}}
The Attempt at a Solution
Since X, Y and Z are uncorrelated, Cov(X,Y)=Cov(X,Z)=Cov(Y,Z)=0. So,
##Cov(U,V)=Cov(Z+X,Z+Y)=Var(Z)=##
The variances are
##Var(U)=Var(Z+X)=Var(Z)+Var(X)##
##Var(V)=Var(Z+Y)=Var(Z)+Var(Y)##
Putting it all together gives
\rho_{UV}=\frac{Var(Z)}{\sqrt{[Var(Z)+Var(X)][Var(Z)+Var(Y)]}}
This seems correct. Could it be simplified further?
Last edited by a moderator: