Corrugated tube (bellow) under axial load

Click For Summary
SUMMARY

This discussion focuses on the verification of finite element analysis (FEA) results for a corrugated tube (bellow) under axial load, utilizing Roark's Formulas for Stress and Strain. The user calculated axial load (P=2000 N), dimensions, and material properties, yielding results of maximum meridional bending stress (σm,max=9.79 MPa) and von Mises stress (σvM=8.48 MPa). The FEA results showed a slight discrepancy with the analytical calculations, indicating a maximum von Mises stress of 14.02 MPa. The user seeks clarification on the geometry assumptions and the calculation methods used in axisymmetric FEA.

PREREQUISITES
  • Understanding of Roark's Formulas for Stress and Strain
  • Familiarity with finite element analysis (FEA) principles
  • Knowledge of material properties such as Young's modulus and Poisson's ratio
  • Experience with Computer Algebra Systems (CAS) for stress calculations
NEXT STEPS
  • Research "Roark's Formulas for Stress and Strain" for detailed applications in engineering
  • Learn about "axisymmetric finite element analysis" and its assumptions
  • Study "von Mises stress calculation" methods for accurate stress analysis
  • Explore "CAD modeling techniques" for creating accurate geometries in FEA
USEFUL FOR

Mechanical engineers, structural analysts, and students involved in finite element analysis and stress testing of materials will benefit from this discussion.

FEAnalyst
Messages
348
Reaction score
149
TL;DR
What can be wrong with my calculations of a corrugated tube subjected to axial load since there's no agreement with FEA?
Hi,

I'm trying to verify the results of a finite element analysis of a corrugated tube (bellow) subjected to axial load. Here are my analytical calculations based on Roark's Formulas for Stress and Strain (originally the formulas are from the article "On the Theory of Thin Elastic Toroidal Shells" by R.A. Clark): $$u=\frac{0.577Pbn \sqrt{1-\nu^{2}}}{E t^{2}}$$ $$\sigma_{m,max}=\frac{1.63P}{2 \pi at} \left[ \frac{ab}{t^{2} \sqrt{1-\nu^{2}}} \right]^{1/3}$$ $$\sigma_{h,max}=\frac{0.925P}{2 \pi at} \left[ \frac{ab(1- \nu^{2})}{t^{2}} \right]^{1/3}$$ where: ##P## - axial load, ##a## - distance from the axis of the tube to the center of the semicircular corrugation, ##b## - outer radius of the semicircular corrugation, ##t## - wall thickness, ##n## - number of corrugations, ##E## - Young's modulus, ##\nu## - Poisson's ratio, ##u## - stretch, ##\sigma_{m,max}## - maximum meridional bending stress, ##\sigma_{h,max}## - maximum circumferential (hoop) membrane stress. In my case the values are: $$P=2000 \ N, \ a=80 \ mm, \ b=42 \ mm, \ t=4 \ mm, \ n=5, \ E=210 \ GPa, \ \nu=0.3$$ and I got the following results from the formulas above: $$u=0.0688 \ mm$$ $$\sigma_{1,max}=9.79 \ MPa$$ $$\sigma_{2,max}=5.29 \ MPa$$ I also calculated von Mises stress (for direct comparison with FEA) using this formula (it should be correct but I'm not 100% sure): $$\sigma_{vM}=\sqrt{\frac{1}{2} \left( (\sigma_{r}- \sigma_{h})^{2}+(\sigma_{h}- \sigma_{m})^{2}+(\sigma_{m}- \sigma_{r})^{2} \right) }=8.48 \ MPa$$ This was calculated assuming radial stress ##\sigma_{r}=0##. The calculations themselves are correct because I performed them using CAS (Computer Algebra System) software.

Here's what I got from axisymmetric FEA: $$u=0.07986 \ mm$$ $$\sigma_{vM}=14.02 \ MPa$$ And that's the stress distribution:

stress.JPG


Do you know what can be wrong here ? I double-checked all the calculations. The FEA model is very simple and there should be no problem with boundary conditions for example.
 
Engineering news on Phys.org
Do you know why Roark calls the corrugation "semicircular"?
Do you know what calculation method is used by axisymmetric FEA?

Do you have a specific application for this?
I ask because the wall thickness should vary along the longitude of the shape, depending on the method of manufacture and stretching of the material.
 
Thank you for the reply. According to Roark's the tube should look like this:

corrugated tube.JPG

And here's the sketch used to create the geometry (2D surface) for the analysis:

tube sketch.JPG


I just drew 5 tangent circles with aligned centers and equal radii. Then I trimmed them using the line passing through the centers to get semicircles and added straight lines at the ends. Finally, I used the offset function to apply constant wall thickness to the section and converted the sketch to a surface. This should agree with assumptions in the book but I also wondered if the geometry is fully correct. Do you think that it should be modified somehow considering the assumptions of the analytical solution ?

This is just a benchmark problem for education purposes, the tube won't be manufactured.

In axisymmetric FEA it's assumed that the geometry, loading and boundary conditions are all constant around the axis. The analysis is actually performed on a 2D model (surface) but then in postprocessing it can be revolved to visualize the results in 3D (that's what I did in the first post).
 
  • Like
Likes   Reactions: Lnewqban

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
14K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
9K