MHB Cos^2(∠POA)+cos^2(∠POB)+cos^2(∠POC)+cos^2(∠POD) is independent of P.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Independent
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
A cube is inscribed in the unit sphere $x^2 +y^2 +z^2 = 1$. Let $A,B,C$ and $D$ denote the
vertices of one face of the cube. Let $O$ denote the center of the sphere, and $P$
denote a point on the sphere. Show that

\[\cos ^2(\angle POA)+\cos ^2(\angle POB)+\cos ^2(\angle POC)+\cos ^2(\angle POD)\]

is independent of $P$.
 
Mathematics news on Phys.org
lfdahl said:
A cube is inscribed in the unit sphere $x^2 +y^2 +z^2 = 1$. Let $A,B,C$ and $D$ denote the
vertices of one face of the cube. Let $O$ denote the center of the sphere, and $P$
denote a point on the sphere. Show that

\[\cos ^2(\angle POA)+\cos ^2(\angle POB)+\cos ^2(\angle POC)+\cos ^2(\angle POD)\]

is independent of $P$.
[sp]
Let us write $S$ for the expression, and $R$ for the radius of the sphere. As $S$ is dimensionless, it is independent of $R$, and we may choose $R$ as we want.

We take the vertices as $A=(1,1,1)$, $B=(-1,1,1)$, $C=(1,-1,1)$ and $D=(-1,-1,1)$; this makes $R=\sqrt3$.

Let the coordinates of $P$ be $(x,y,z)$. We have:

$\cos POA = \dfrac{\langle OA\cdot OP\rangle}{R^2} = \dfrac{x + y + z}{3}$

and a similar expression for the other terms ($\langle\cdot\rangle$ is the dot product).

This gives:

$$\begin{align*}
S &=\frac19\left((x+y+z)^2 + (-x+y+z)^2 + (x-y+z)^2 +(-x-y+z)^2\right)\\
&= \frac49\left(x^2+y^2+z^2\right)
\end{align*}
$$

and, as $x^2+y^2+z^2=R^2 = 3$, we get $S=\dfrac43$, which is indeed independent of the position of $P$.
[/sp]
 
castor28 said:
[sp]
Let us write $S$ for the expression, and $R$ for the radius of the sphere. As $S$ is dimensionless, it is independent of $R$, and we may choose $R$ as we want.

We take the vertices as $A=(1,1,1)$, $B=(-1,1,1)$, $C=(1,-1,1)$ and $D=(-1,-1,1)$; this makes $R=\sqrt3$.

Let the coordinates of $P$ be $(x,y,z)$. We have:

$\cos POA = \dfrac{\langle OA\cdot OP\rangle}{R^2} = \dfrac{x + y + z}{3}$

and a similar expression for the other terms ($\langle\cdot\rangle$ is the dot procuct).

This gives:

$$\begin{align*}
S &=\frac19\left((x+y+z)^2 + (-x+y+z)^2 + (x-y+z)^2 +(-x-y+z)^2\right)\\
&= \frac49\left(x^2+y^2+z^2\right)
\end{align*}
$$

and, as $x^2+y^2+z^2=R^2 = 3$, we get $S=\dfrac43$, which is indeed independent of the position of $P$.
[/sp]

Thankyou, castor28 for such a nice solution and for your participation!(Handshake)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top