- #1
- 2,580
- 1
Homework Statement
I already have the solutions, just don't understand one step
Let [tex](n_k)_{k=1}^{\infty}[/tex] be a sequence of integers
[tex]n_1 < n_2 < n_3 < ...[/tex]
Then [tex]n_k \geq k[/tex] [tex] \forall k = 1,2, ...[/tex]
In particular [tex]n_k \to \infty[/tex] when [tex]k \to \infty[/tex]
Prove this is true
2. The solution
Employ Induction
(1) Base Case: k = 1
[tex]n_1 \geq 1[/tex]
(2) Induction: Assume [tex]n_k \geq k[/tex] for the case k. We show k + 1 case
[tex]n_{k+1} > n_k > k \implies n_{k+1} > k \implies n_{k+1} \geq k + 1[/tex]
Hence the result holds
Question
How on Earth did we get to [tex]n_{k+1} \geq k + 1[/tex] from [tex] n_{k+1} > k [/tex]