guitarphysics said:
I think I prefer strangerep's way of looking at it best; as far as I can tell, it doesn't rely on the rest of physics, and is very precise. However, it seems like a much more mathematical way of looking at the problem and I feel there should be more physics (like in Ben's approach).
Well, the physical content (using only a very small set of intuitive assumptions), and its mathematical development proceed along the following lines:
Following Rindler [1],
Postulate 1
(Principle of Relativity):
The laws of physics are identical in all inertial frames,
or, equivalently,
the outcome of any physical experiment is the same when performed with identical initial conditions relative to any inertial frame.
This requires a definition of inertial frames. Still following Rindler,
an Einsteinian inertial frame is a reference frame in which spatial relations, as determined by rigid scales at rest in the frame, are Euclidean and in which there exists a universal time in terms of which free particles remain at rest or continue to move with constant speed along straight lines (i.e., in terms of which free particles obey Newton's first law).
The boundary between the physics and the maths lies in this: an observer can reasonably possesses local length scales (a very short rigid rod), and a local clock (measuring short time intervals). That much is physical. One then
imagines that the rod could be successively laid end-over-end indefinitely to create a spatial coordinate grid. Similarly, one
imagines that the clock could be duplicated endlessly, with the duplicates moved to spatially remote locations.
The (abstract) space of dynamical parameters needed to describe such an arrangement is assumed to correspond to (possibly a subspace of) ##R^4##, i.e., 3 space and 1 time. Similarly, velocities are assumed to correspond to (possibly a subspace of) ##R^3##. Thus we imagine a 7-dimensional velocity extended phase space of parameters. (We need not extend any further to higher dimensional phase spaces involving acceleration, jerk, etc, since the requirement of inertial motion restricts acceleration to be zero.)
These imaginings are made more precise using group theory. E.g., the basic physical spatial displacement defined by the rod is expressed in terms of a transformation of these dynamical parameters. Demanding that such transformations preserve inertial motion (i.e., that zero acceleration is mapped to zero acceleration), and that they form a Lie group, one can derive quite strong restrictions for the possible form that such transformations may take.
It's similar for temporal displacements, and velocity boosts (preserving the origin). One takes the basic physical operation of a small temporal displacement expressed via a local clock, or a velocity difference (holding the spatiotemporal origin invariant), expresses these as transformations, and imposes the same group theoretic requirements when composing multiple such transformations.
Summarizing, the physical content consists of the concept of inertial motion of an observer, and the availability of means for measuring very local spatial displacements, very local temporal delay, and relative velocities of other such observers who are momentarily at the 1st observer's origin. One also assumes spatial isotropy: that there is no preferred spatial direction.
Then one asks for the most general transformation of the parameters in the (abstract) velocity phase space which preserve the condition of zero acceleration. That encapsulates all the ways in which 2 inertial observers could be labelling the 7-dimensional abstract phase space in "different" (though physically equivalent) ways. The parameters of the transformation between 2 such observers may then be identified as the physically meaningful
relative observables (spatial displacement, temporal delay, relative velocity, spatial orientation, etc). One naturally adopts an additional principle of "physical regularity": that finite values of these relative observables must be mapped by the transformations to finite values. That restricts the allowable transformations a bit further.
Then it's just a matter of grinding through the math of Lie group theory applied to such transformations to find the most general possibility, as I described earlier. The method is firmly grounded in realistic physics, which can be expressed quite concisely. The detailed math is extensive, of course, taking many pages if one performs all calculations explicitly. But overall it's a good thing: from a small set of physical concepts based on intuitive local operations, one derives an extensive theory. The possibility of an invariant limiting speed constant, and an invariant length constant, emerge as derived consequences. Only their values need be determined experimentally.References:
[1] W. Rindler, Introduction to Special Relativity,
Oxford University Press, 1991 (2nd Ed.), ISBN 0-19-85395-2-5.