Undergrad Coulomb gauge Lorenz invariant?

Click For Summary
The discussion clarifies that the Coulomb gauge is not Lorentz invariant because it relies on a specific inertial frame, meaning that a four-potential satisfying the Coulomb gauge condition in one frame may not do so in another. While the gauge can be expressed in a covariant form, it introduces a preferred reference frame through the vector U, which leads to a perceived breaking of Lorentz symmetry. The Coulomb gauge effectively eliminates unphysical degrees of freedom, providing a complete gauge fixing, but at the cost of this fictitious symmetry breaking. In contrast, the Landau gauge offers a manifestly covariant approach but only partially fixes the gauge, resulting in unphysical degrees of freedom that can complicate calculations. Ultimately, the choice of gauge involves trade-offs between symmetry and simplicity in quantum field theory.
Sebas4
Messages
13
Reaction score
2
TL;DR
What is meant by Coulomb gauge not being Lorenz invariant?
Hey,

What is meant by Coulomb gauge not being Lorenz invariant?

The Coulomb gauge is just a constraint on \mathbf{A} and \phi and thus it is independent of inertial frame.

I posted the question in the wrong section. This question is in the context of QFT. The notes says:
A disadvantage of working in Coulomb gauge is that it breaks Lorentz invariance.
 
Last edited:
Physics news on Phys.org
Sebas4 said:
TL;DR Summary: What is meant by Coulomb gauge not being Lorenz invariant?

What is meant by Coulomb gauge not being Lorenz invariant?
It means that if you have some four-potential ##A^\mu=(\phi,\vec A)## where ##A^\mu## satisfies the Coulomb gauge condition in some unprimed inertial frame, then ##A^{\mu'}=\Lambda^{\mu'}_\mu A^\mu## generally will not satisfy the Coulomb gauge condition in the primed inertial frame. It will still be a perfectly valid four-potential in the primed frame, but just not in the Coulomb gauge.
 
Of course you can write the Coulomb gauge in a manifestly covariant way.

The point is that usually you take an arbitrary inertial frame ##\Sigma^{*}## and write the Coulomb-gauge condition in (1+3)-notation as
$$\vec{\nabla}^* \cdot \vec{A}^*=0.$$
You can make this manifestly covariant by introducing the four-vector with components ##U^*=(1,0,0,0)## in this frame.

Then the Coulomb-gauge condition in a general frame reads
$$\partial_{\mu} (A^{\mu}-U^{\mu} U^{\nu} A_{\nu})=0.$$
The point is that you now have introduced a preferred inertial reference frame to define your gauge constraint.

Using this covariant notation, you get a manifestly covariant photon propagator, containing the ##U^{\mu}## of course. Now the important point is that due to gauge-invariance for any physically observable quantities like S-matrix elements for scatterings between photons and electrons+positrons in standard spinor QED the frame-dependent terms, i.e., those containing ##U^{\mu}## cancel thanks to the Ward identities.

The advantage of the Coulomb gauge is that you have a complete gauge fixing and no unphysical degrees of freedom. The disadvantage is this "fictitious breaking of Lorentz symmetry" due to the introduction of an arbitrary reference frame, i.e., the vector ##U^{\mu}##.

You can also use a manifestly covariant gauge like the Landau gauge, demanding ##\partial_{\mu} A^{\mu}=0##, but this fixes the gauge only partially, and you have to deal with unphysical degrees of freedom like longitudinal and timelike photons, which however also cancel using the Gupta-Bleuler formalism. The advantage is that there's no arbitrary preferred frame and the Feynman rules lead to simpler expressions.
 
  • Like
Likes dextercioby and Dale
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
10K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 47 ·
2
Replies
47
Views
5K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K