I Coulomb gauge Lorenz invariant?

Click For Summary
The discussion clarifies that the Coulomb gauge is not Lorentz invariant because it relies on a specific inertial frame, meaning that a four-potential satisfying the Coulomb gauge condition in one frame may not do so in another. While the gauge can be expressed in a covariant form, it introduces a preferred reference frame through the vector U, which leads to a perceived breaking of Lorentz symmetry. The Coulomb gauge effectively eliminates unphysical degrees of freedom, providing a complete gauge fixing, but at the cost of this fictitious symmetry breaking. In contrast, the Landau gauge offers a manifestly covariant approach but only partially fixes the gauge, resulting in unphysical degrees of freedom that can complicate calculations. Ultimately, the choice of gauge involves trade-offs between symmetry and simplicity in quantum field theory.
Sebas4
Messages
13
Reaction score
2
TL;DR
What is meant by Coulomb gauge not being Lorenz invariant?
Hey,

What is meant by Coulomb gauge not being Lorenz invariant?

The Coulomb gauge is just a constraint on \mathbf{A} and \phi and thus it is independent of inertial frame.

I posted the question in the wrong section. This question is in the context of QFT. The notes says:
A disadvantage of working in Coulomb gauge is that it breaks Lorentz invariance.
 
Last edited:
Physics news on Phys.org
Sebas4 said:
TL;DR Summary: What is meant by Coulomb gauge not being Lorenz invariant?

What is meant by Coulomb gauge not being Lorenz invariant?
It means that if you have some four-potential ##A^\mu=(\phi,\vec A)## where ##A^\mu## satisfies the Coulomb gauge condition in some unprimed inertial frame, then ##A^{\mu'}=\Lambda^{\mu'}_\mu A^\mu## generally will not satisfy the Coulomb gauge condition in the primed inertial frame. It will still be a perfectly valid four-potential in the primed frame, but just not in the Coulomb gauge.
 
Of course you can write the Coulomb gauge in a manifestly covariant way.

The point is that usually you take an arbitrary inertial frame ##\Sigma^{*}## and write the Coulomb-gauge condition in (1+3)-notation as
$$\vec{\nabla}^* \cdot \vec{A}^*=0.$$
You can make this manifestly covariant by introducing the four-vector with components ##U^*=(1,0,0,0)## in this frame.

Then the Coulomb-gauge condition in a general frame reads
$$\partial_{\mu} (A^{\mu}-U^{\mu} U^{\nu} A_{\nu})=0.$$
The point is that you now have introduced a preferred inertial reference frame to define your gauge constraint.

Using this covariant notation, you get a manifestly covariant photon propagator, containing the ##U^{\mu}## of course. Now the important point is that due to gauge-invariance for any physically observable quantities like S-matrix elements for scatterings between photons and electrons+positrons in standard spinor QED the frame-dependent terms, i.e., those containing ##U^{\mu}## cancel thanks to the Ward identities.

The advantage of the Coulomb gauge is that you have a complete gauge fixing and no unphysical degrees of freedom. The disadvantage is this "fictitious breaking of Lorentz symmetry" due to the introduction of an arbitrary reference frame, i.e., the vector ##U^{\mu}##.

You can also use a manifestly covariant gauge like the Landau gauge, demanding ##\partial_{\mu} A^{\mu}=0##, but this fixes the gauge only partially, and you have to deal with unphysical degrees of freedom like longitudinal and timelike photons, which however also cancel using the Gupta-Bleuler formalism. The advantage is that there's no arbitrary preferred frame and the Feynman rules lead to simpler expressions.
 
  • Like
Likes dextercioby and Dale
I've been thinking some more about the Hawking - Penrose Singularity theorem and was wondering if you could help me gain a better understanding of the assumptions they made when they wrote it, in 1970. In Hawking's book, A Brief History of Time (chapter 3, page 25) he writes.... In 1965 I read about Penrose’s theorem that any body undergoing gravitational collapse must eventually form a singularity. I soon realized that if one reversed the direction of time in Penrose’s theorem, so that...

Similar threads

Replies
32
Views
4K
  • · Replies 144 ·
5
Replies
144
Views
10K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
10K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 47 ·
2
Replies
47
Views
5K
  • · Replies 57 ·
2
Replies
57
Views
7K
  • · Replies 32 ·
2
Replies
32
Views
5K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K