B Coulomb pressure and concentric spheres

AI Thread Summary
The discussion centers on the electrostatic interactions between a positively charged sphere and a concentric negatively charged shell, questioning whether there is an outward pressure at the surface of the sphere or an attraction between the two. It suggests that the pressure at radius 'a' could be calculated as kqq/a²/(4πa²), decreasing to zero at radius 'b'. The conversation also posits that if 'b' were infinite, the dynamics would remain unchanged. Additionally, the problem is likened to a hydrostatics scenario, where the relationship between pressure and electric field strength is explored. Ultimately, the resolution of the field strength is sought, emphasizing the connection to hydrostatic principles.
MarkL
Messages
34
Reaction score
2
Suppose you have a sphere of radius a of positive charge, and a concentric shell from a to b of negative charge. The positive charge is equal to the negative charge. (non-conducting, uniform density)
Is there an outward pressure at a of kqq/a2/(4πa2) - with pressure decreasing with radius, becoming P = 0 at b.
Or, is there an attraction between the sphere and the shell --> P = 0 everywhere. The thickness of the shell does not matter. What if b was infinity?
Thanks
 
Physics news on Phys.org
Do you know how to solve the problem for the field strength? Because it's the same as a hydrostatics problem with ##\nabla p(r) = -\rho \mathbf{E}(r)##. Equivalently ##\nabla(p - \rho \phi) = 0##.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top