- #1
- 12
- 0
give counter examples to disprove the following statements:
a) a real valued odd function cannot be strictly monotonic
b) a real valued periodic function must be odd or even
c) a real valued monotonic function cannot be even
a) sinh(x) ??
b)
c)
a) a real valued odd function cannot be strictly monotonic
b) a real valued periodic function must be odd or even
c) a real valued monotonic function cannot be even
a) sinh(x) ??
b)
c)