Counting Color Combinations in 12 Triangles

Click For Summary

Discussion Overview

The discussion revolves around the problem of counting color combinations for 12 triangles, where each side can be colored red, green, or blue. The focus is on determining how many of the possible colorings meet the condition that each triangle has one edge of each color.

Discussion Character

  • Exploratory, Mathematical reasoning

Main Points Raised

  • One participant presents the total number of possible colorings as $3^{24}$, based on the number of sides across the 12 triangles.
  • Another participant suggests that the initial claim is "almost right," indicating potential issues or nuances in the reasoning presented.

Areas of Agreement / Disagreement

The discussion remains unresolved, with at least one participant questioning the accuracy of the initial claim without providing a definitive alternative.

maxkor
Messages
79
Reaction score
0
There are 12 triangles (picture). We color each side of the triangle in red, green or blue. Among the $3^{24}$ possible colorings, how many have the property that every triangle has one edge of each color?
 

Attachments

  • ry.png
    ry.png
    2.3 KB · Views: 135
Mathematics news on Phys.org
[TIKZ]\coordinate (A) at (30:2) ;
\coordinate (B) at (90:2) ;
\coordinate (C) at (150:2) ;
\coordinate (D) at (210:2) ;
\coordinate (E) at (270:2) ;
\coordinate (F) at (330:2) ;
\coordinate (U) at (0:5) ;
\coordinate (V) at (60:5) ;
\coordinate (W) at (120:5) ;
\coordinate (X) at (180:5) ;
\coordinate (Y) at (240:5) ;
\coordinate (Z) at (300:5) ;
\foreach \point in {A,B,C,D,E,F,U,V,W,X,Y,Z} \fill [black] (\point) circle (3pt) ;
\draw (A) -- (B) -- (C) -- (D) -- (E) -- (F) -- (A) -- (U) -- (V) -- (W) -- (X) -- (Y) -- (Z) -- (U) --(A) -- (V) -- (B) -- (W) -- (C) -- (X) -- (D) -- (Y) -- (E) -- node[ left ]{$x$}(Z) -- node[ right ]{$z$}(F) -- node[ below ]{$y$}(U) ;
\draw (-90:3.5) node{$6$} ;
\foreach \x in {0,30,...,240} \draw (\x:3.5) node{$2$} ;
\draw (270:2.75) node{$A$} ;
\draw (240:2.75) node{$B$} ;
\draw (0:2.75) node{$C$} ;
\draw (330:2.75) node{$D$} ;
\draw (300:2.75) node{$E$} ;[/TIKZ]
Start with the triangle labelled $A$ at the bottom of the diagram. There are 6 ways to colour its three sides in different colours. Next, look at triangle $B$. One of its sides has already been coloured, and there are 2 ways to colour the remaining sides. Continuing in this way clockwise round the diagram, there are two ways to colour each of the triangles up to and including the one labelled $C$. There are now two cases to consider for the remaining triangles $D$ and $E$. If side $x$ in triangle $A$ and side $y$ in triangle $C$ have different colours then there is only one choice for the colour of side $z$ and therefore only 1 way to colour triangles $D$ and $E$. But if $x$ and $y$ have the same colour then there are two choices for the colour of side $z$, and therefore 2 ways to colour triangles $D$ and $E$.

Here's where the argument becomes probabilistic and unreliable. If the colours of $x$ and $y$ had been chosen independently at random, then the probability of them being the same would be $\frac13$, so the expected number of colourings for triangles $D$ and $E$ would be $\frac13*2 + \frac23*1 = \frac43$. Then the expected value for the number of colourings for the whole diagram would be $$6*2^9 * \frac43 = 2^{12}.$$ But in fact the colourings of $x$ and $y$ are not independent. So the above argument is not rigorous, and the answer may not even be correct (though it must be a good approximation!).
 
Opalg said:
[TIKZ]\coordinate (A) at (30:2) ;
\coordinate (B) at (90:2) ;
\coordinate (C) at (150:2) ;
\coordinate (D) at (210:2) ;
\coordinate (E) at (270:2) ;
\coordinate (F) at (330:2) ;
\coordinate (U) at (0:5) ;
\coordinate (V) at (60:5) ;
\coordinate (W) at (120:5) ;
\coordinate (X) at (180:5) ;
\coordinate (Y) at (240:5) ;
\coordinate (Z) at (300:5) ;
\foreach \point in {A,B,C,D,E,F,U,V,W,X,Y,Z} \fill [black] (\point) circle (3pt) ;
\draw (A) -- (B) -- (C) -- (D) -- (E) -- (F) -- (A) -- (U) -- (V) -- (W) -- (X) -- (Y) -- (Z) -- (U) --(A) -- (V) -- (B) -- (W) -- (C) -- (X) -- (D) -- (Y) -- (E) -- node[ left ]{$x$}(Z) -- node[ right ]{$z$}(F) -- node[ below ]{$y$}(U) ;
\draw (-90:3.5) node{$6$} ;
\foreach \x in {0,30,...,240} \draw (\x:3.5) node{$2$} ;
\draw (270:2.75) node{$A$} ;
\draw (240:2.75) node{$B$} ;
\draw (0:2.75) node{$C$} ;
\draw (330:2.75) node{$D$} ;
\draw (300:2.75) node{$E$} ;[/TIKZ]
Start with the triangle labelled $A$ at the bottom of the diagram. There are 6 ways to colour its three sides in different colours. Next, look at triangle $B$. One of its sides has already been coloured, and there are 2 ways to colour the remaining sides. Continuing in this way clockwise round the diagram, there are two ways to colour each of the triangles up to and including the one labelled $C$. There are now two cases to consider for the remaining triangles $D$ and $E$. If side $x$ in triangle $A$ and side $y$ in triangle $C$ have different colours then there is only one choice for the colour of side $z$ and therefore only 1 way to colour triangles $D$ and $E$. But if $x$ and $y$ have the same colour then there are two choices for the colour of side $z$, and therefore 2 ways to colour triangles $D$ and $E$.

Here's where the argument becomes probabilistic and unreliable. If the colours of $x$ and $y$ had been chosen independently at random, then the probability of them being the same would be $\frac13$, so the expected number of colourings for triangles $D$ and $E$ would be $\frac13*2 + \frac23*1 = \frac43$. Then the expected value for the number of colourings for the whole diagram would be $$6*2^9 * \frac43 = 2^{12}.$$ But in fact the colourings of $x$ and $y$ are not independent. So the above argument is not rigorous, and the answer may not even be correct (though it must be a good approximation!).
Almost right :)
 
I now think that the answer should be $2^{12} + 2=4098$, but I don't have a proof of that.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 207 ·
7
Replies
207
Views
14K
  • · Replies 30 ·
2
Replies
30
Views
6K
  • · Replies 40 ·
2
Replies
40
Views
4K