MHB Counting Color Combinations in 12 Triangles

maxkor
Messages
79
Reaction score
0
There are 12 triangles (picture). We color each side of the triangle in red, green or blue. Among the $3^{24}$ possible colorings, how many have the property that every triangle has one edge of each color?
 

Attachments

  • ry.png
    ry.png
    2.3 KB · Views: 111
Mathematics news on Phys.org
[TIKZ]\coordinate (A) at (30:2) ;
\coordinate (B) at (90:2) ;
\coordinate (C) at (150:2) ;
\coordinate (D) at (210:2) ;
\coordinate (E) at (270:2) ;
\coordinate (F) at (330:2) ;
\coordinate (U) at (0:5) ;
\coordinate (V) at (60:5) ;
\coordinate (W) at (120:5) ;
\coordinate (X) at (180:5) ;
\coordinate (Y) at (240:5) ;
\coordinate (Z) at (300:5) ;
\foreach \point in {A,B,C,D,E,F,U,V,W,X,Y,Z} \fill [black] (\point) circle (3pt) ;
\draw (A) -- (B) -- (C) -- (D) -- (E) -- (F) -- (A) -- (U) -- (V) -- (W) -- (X) -- (Y) -- (Z) -- (U) --(A) -- (V) -- (B) -- (W) -- (C) -- (X) -- (D) -- (Y) -- (E) -- node[ left ]{$x$}(Z) -- node[ right ]{$z$}(F) -- node[ below ]{$y$}(U) ;
\draw (-90:3.5) node{$6$} ;
\foreach \x in {0,30,...,240} \draw (\x:3.5) node{$2$} ;
\draw (270:2.75) node{$A$} ;
\draw (240:2.75) node{$B$} ;
\draw (0:2.75) node{$C$} ;
\draw (330:2.75) node{$D$} ;
\draw (300:2.75) node{$E$} ;[/TIKZ]
Start with the triangle labelled $A$ at the bottom of the diagram. There are 6 ways to colour its three sides in different colours. Next, look at triangle $B$. One of its sides has already been coloured, and there are 2 ways to colour the remaining sides. Continuing in this way clockwise round the diagram, there are two ways to colour each of the triangles up to and including the one labelled $C$. There are now two cases to consider for the remaining triangles $D$ and $E$. If side $x$ in triangle $A$ and side $y$ in triangle $C$ have different colours then there is only one choice for the colour of side $z$ and therefore only 1 way to colour triangles $D$ and $E$. But if $x$ and $y$ have the same colour then there are two choices for the colour of side $z$, and therefore 2 ways to colour triangles $D$ and $E$.

Here's where the argument becomes probabilistic and unreliable. If the colours of $x$ and $y$ had been chosen independently at random, then the probability of them being the same would be $\frac13$, so the expected number of colourings for triangles $D$ and $E$ would be $\frac13*2 + \frac23*1 = \frac43$. Then the expected value for the number of colourings for the whole diagram would be $$6*2^9 * \frac43 = 2^{12}.$$ But in fact the colourings of $x$ and $y$ are not independent. So the above argument is not rigorous, and the answer may not even be correct (though it must be a good approximation!).
 
Opalg said:
[TIKZ]\coordinate (A) at (30:2) ;
\coordinate (B) at (90:2) ;
\coordinate (C) at (150:2) ;
\coordinate (D) at (210:2) ;
\coordinate (E) at (270:2) ;
\coordinate (F) at (330:2) ;
\coordinate (U) at (0:5) ;
\coordinate (V) at (60:5) ;
\coordinate (W) at (120:5) ;
\coordinate (X) at (180:5) ;
\coordinate (Y) at (240:5) ;
\coordinate (Z) at (300:5) ;
\foreach \point in {A,B,C,D,E,F,U,V,W,X,Y,Z} \fill [black] (\point) circle (3pt) ;
\draw (A) -- (B) -- (C) -- (D) -- (E) -- (F) -- (A) -- (U) -- (V) -- (W) -- (X) -- (Y) -- (Z) -- (U) --(A) -- (V) -- (B) -- (W) -- (C) -- (X) -- (D) -- (Y) -- (E) -- node[ left ]{$x$}(Z) -- node[ right ]{$z$}(F) -- node[ below ]{$y$}(U) ;
\draw (-90:3.5) node{$6$} ;
\foreach \x in {0,30,...,240} \draw (\x:3.5) node{$2$} ;
\draw (270:2.75) node{$A$} ;
\draw (240:2.75) node{$B$} ;
\draw (0:2.75) node{$C$} ;
\draw (330:2.75) node{$D$} ;
\draw (300:2.75) node{$E$} ;[/TIKZ]
Start with the triangle labelled $A$ at the bottom of the diagram. There are 6 ways to colour its three sides in different colours. Next, look at triangle $B$. One of its sides has already been coloured, and there are 2 ways to colour the remaining sides. Continuing in this way clockwise round the diagram, there are two ways to colour each of the triangles up to and including the one labelled $C$. There are now two cases to consider for the remaining triangles $D$ and $E$. If side $x$ in triangle $A$ and side $y$ in triangle $C$ have different colours then there is only one choice for the colour of side $z$ and therefore only 1 way to colour triangles $D$ and $E$. But if $x$ and $y$ have the same colour then there are two choices for the colour of side $z$, and therefore 2 ways to colour triangles $D$ and $E$.

Here's where the argument becomes probabilistic and unreliable. If the colours of $x$ and $y$ had been chosen independently at random, then the probability of them being the same would be $\frac13$, so the expected number of colourings for triangles $D$ and $E$ would be $\frac13*2 + \frac23*1 = \frac43$. Then the expected value for the number of colourings for the whole diagram would be $$6*2^9 * \frac43 = 2^{12}.$$ But in fact the colourings of $x$ and $y$ are not independent. So the above argument is not rigorous, and the answer may not even be correct (though it must be a good approximation!).
Almost right :)
 
I now think that the answer should be $2^{12} + 2=4098$, but I don't have a proof of that.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
11
Views
2K
Replies
1
Views
2K
Replies
4
Views
1K
Replies
1
Views
3K
Replies
2
Views
2K
Replies
30
Views
5K
Replies
4
Views
1K
Replies
4
Views
3K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top