1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Coursework check: Fourier series, Coefficients

  1. Oct 30, 2011 #1
    1. The problem statement, all variables and given/known data
    [PLAIN]http://pokit.org/get/d9a4a8542c2acdfedbb1038292f6817b.jpg [Broken]

    Find the coefficients of this function Ck

    2. Relevant equations
    3. The attempt at a solution

    [tex]\begin{align}\Large C_{k}=\frac{1}{T}\cdot \int_{-T/2}^{T/2} f(t)\cdot e^{\frac{-jk2\pi t}{T}}dt=\frac{1}{T}\cdot \int_{-T/2}^{0} a\cdot e^{\frac{-jk2\pi t}{T}}dt+\frac{1}{T}\cdot \int_{0}^{T/2} b\cdot e^{\frac{-jk2\pi t}{T}}dt = \\

    \Large=\frac{1}{T}\cdot a\left[\frac{e^{\frac{-jk2\pi t}{T}}}{\frac{-jk2\pi}{T}}\right]_{-T/2}^{0}+\frac{1}{T}\cdot b\left[\frac{e^{\frac{-jk2\pi t}{T}}}{\frac{-jk2\pi}{T}}\right]_{0}^{T/2}=

    \frac{j\cdot a}{T}\cdot \frac{e^{0}}{\frac{k2\pi}{T}}-\frac{j\cdot a}{T}\cdot \frac{e^{jk\pi}}{\frac{k2\pi}{T}}+\frac{j\cdot b}{T}\cdot \frac{e^{-jk\pi}}{\frac{k2\pi}{T}}-\frac{j\cdot b}{T}\cdot \frac{e^{0}}{\frac{k2\pi}{T}}= \\

    \Large=\frac{j}{T\cdot\frac{k2\pi}{T}}\cdot\left(a-a\cdot e^{jk\pi}+b\cdot e^{-jk\pi}-b\right)=|| e^{jk\pi}=(-1)^{k}; e^{-jk\pi}=\frac{1}{(-1)^{k}}=(-1)^{k}||= \\ \Large\frac{j}{T\cdot\frac{k2\pi}{T}}\cdot\left(a-b-(-1)^{k}(a-b)\right)=

    For k=2l;
    [itex] \left((a-b)(1-(-1)^k)\right)=0; C_k = 0 [/itex]

    For k=2l+1;

    [itex] \left((a-b)(1-(-1)^k)\right)=2(a-b); C_k = \frac{j\cdot 2}{(2l+1)2\pi}\cdot (a-b)=\frac{j}{(2l+1)\pi}\cdot (a-b) [/itex]

    Somebody please check this.

    How do I find bn and an.
    Last edited by a moderator: May 5, 2017
  2. jcsd
  3. Oct 30, 2011 #2

    Took me half an hour to write this in LaTex please somebody :/
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook