MHB Creating terms that have the value 0

  • Thread starter Thread starter llijnnasil
  • Start date Start date
  • Tags Tags
    Terms Value
llijnnasil
Messages
1
Reaction score
0
Hey, I just found this interesting exercise and I'd like to know how to solve it.

The exercise:
Between the numbers 4, 5, 6, ... , n, you can put minus or plus signs ( - , +) to create
a term.
(n means any natural number) and (the numbers must be in order)

Which possible numbers for n can you put so that the term has the value 0 ?

I've already found a term which has the value 0, but how to find ALL the possible values for n?

example:
4-5-6+7 = 0
so in this example, the value for n is 7.

THANK YOU SO MUCH FOR HELP !
 
Mathematics news on Phys.org
Hi Ilijnnasil,

Welcome to MHB.

Let's say an integer $n \ge 4$ is "acceptable" if there are numbers $a_4, a_5, a_6, \dots , a_n$ where $a_i \in \{-1,1\}$ and $\sum_{i=4}^n a_i \ i = 0$. You have already shown that 7 is acceptable. Another acceptable number is 8, because $1 \cdot 4 + 1 \cdot 5 + 1 \cdot 6 - 1 \cdot 7 - 1 \cdot 8 = 0$.

If $n$ is acceptable, then $n+4$ is also acceptable, because then

$\sum_{i=4}^n a_i \ i + 1 \cdot (n+1) -1 \cdot (n+2) - 1 \cdot (n+3) + 1 \cdot (n+4) = 0$.

So we know all numbers of the form $4n+3$ and $4n+4$ are acceptable, where $n = 1,2,3, \dots $.

Can there be any other acceptable numbers? Well, notice that
$$S(n) = \sum_{i=4}^n i = \frac{n(n+1)}{2} - 6$$
If $n$ is acceptable, then the terms with +1 attached must sum to
$$\frac{1}{2} S_n = \frac{n(n+1)}{4} - 3$$
which must be an integer, so $n(n+1)$ must be a multiple of 4. Now any integer is congruent to one of 0, 1, 2, or 3 modulo 4, and we see that $n(n+1) \equiv 0 \pmod 4$ when n is 0 or 3, and $n(n+1) \equiv 2 \pmod 4$ when n is 1 or 2. So if $n$ is acceptable, we must have $n \equiv 0 \pmod 4$ or $n \equiv 3 \pmod 4$.

This rules out any numbers but $4n+3$ and $4n+4$ for $n = 1,2,3, \dots$,
so that is the complete list of acceptable numbers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
10
Views
2K
Replies
55
Views
5K
Replies
11
Views
2K
Replies
17
Views
27K
Replies
8
Views
1K
Replies
2
Views
1K
Back
Top