MHB CTS and show the roots in this form

  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Form Roots
Click For Summary
The discussion focuses on solving the quadratic equation $$x^{2}-8x-29=0$$ using the completing the square (CTS) method. After applying CTS, the equation simplifies to $$(x-4)^2 - 45 = 0$$. The next steps involve isolating the square, leading to $$x - 4 = \pm 3\sqrt{5}$$. This results in the roots being expressed as $$x = 4 \pm 3\sqrt{5}$$, confirming the required form of c$$\pm$$d$$\sqrt{5}$$. The conversation highlights the effectiveness of the CTS method in solving quadratic equations.
ai93
Messages
54
Reaction score
0
I have to show the roots of $$x^{2}-8x-29=0$$ are c$$\pm$$d$$\sqrt{5}$$

I used completing the square method. Once I used CTS I got the answer
$$(x-4)^2-45=0$$ So I am not sure what is the next step to put it in the form of c$$\pm$$d$$\sqrt{5}$$
 
Mathematics news on Phys.org
mathsheadache said:
I have to show the roots of $$x^{2}-8x-29=0$$ are c$$\pm$$d$$\sqrt{5}$$

I used completing the square method. Once I used CTS I got the answer
$$(x-4)^2-45=0$$ So I am not sure what is the next step to put it in the form of c$$\pm$$d$$\sqrt{5}$$

$$(x-4)^2=45 \Rightarrow x-4= \pm \sqrt{45} \Rightarrow x-4=\pm \sqrt{9 \cdot 5} \Rightarrow x-4=\pm 3 \sqrt{5} \Rightarrow x=4 \pm 3 \sqrt{5}$$
 
Hello, mathsheadache!

I have to show the roots of: $$\:x^2-8x-29\:=\:0\:$$ are [math]\:c\pm d\sqrt{5}[/math]

I used completing the square method.
Once I used CTS I got the answer: $$\;(x-4)^2-45\:=\:0$$

So I am not sure what is the next step to put it in the form of [math]c\pm d \sqrt{5}[/math]
What is the purpose of CTS? . . . To solve for [math]x\,![/math]

[math](x-4)^2 - 45 \;=\;0[/math]

[math]\qquad(x-4)^2 \;=\; 45[/math]

[math]\qquad\quad x-4 \;=\;\pm\sqrt{45}[/math]

[math]\qquad\quad x-4 \;=\;\pm3 \sqrt{5}[/math]

[math]\qquad\qquad\;\, x \;=\;4 \pm 3\sqrt{5}[/math]
 
evinda said:
$$(x-4)^2=45 \Rightarrow x-4= \pm \sqrt{45} \Rightarrow x-4=\pm \sqrt{9 \cdot 5} \Rightarrow x-4=\pm 3 \sqrt{5} \Rightarrow x=4 \pm 3 \sqrt{5}$$

Thanks this really helped!
 
soroban said:
Hello, mathsheadache!


What is the purpose of CTS? . . . To solve for [math]x\,![/math]

[math](x-4)^2 - 45 \;=\;0[/math]

[math]\qquad(x-4)^2 \;=\; 45[/math]

[math]\qquad\quad x-4 \;=\;\pm\sqrt{45}[/math]

[math]\qquad\quad x-4 \;=\;\pm3 \sqrt{5}[/math]

[math]\qquad\qquad\;\, x \;=\;4 \pm 3\sqrt{5}[/math]

Cheers, you make the question look easier than it is!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
3K