MHB CTS and show the roots in this form

  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Form Roots
Click For Summary
The discussion focuses on solving the quadratic equation $$x^{2}-8x-29=0$$ using the completing the square (CTS) method. After applying CTS, the equation simplifies to $$(x-4)^2 - 45 = 0$$. The next steps involve isolating the square, leading to $$x - 4 = \pm 3\sqrt{5}$$. This results in the roots being expressed as $$x = 4 \pm 3\sqrt{5}$$, confirming the required form of c$$\pm$$d$$\sqrt{5}$$. The conversation highlights the effectiveness of the CTS method in solving quadratic equations.
ai93
Messages
54
Reaction score
0
I have to show the roots of $$x^{2}-8x-29=0$$ are c$$\pm$$d$$\sqrt{5}$$

I used completing the square method. Once I used CTS I got the answer
$$(x-4)^2-45=0$$ So I am not sure what is the next step to put it in the form of c$$\pm$$d$$\sqrt{5}$$
 
Mathematics news on Phys.org
mathsheadache said:
I have to show the roots of $$x^{2}-8x-29=0$$ are c$$\pm$$d$$\sqrt{5}$$

I used completing the square method. Once I used CTS I got the answer
$$(x-4)^2-45=0$$ So I am not sure what is the next step to put it in the form of c$$\pm$$d$$\sqrt{5}$$

$$(x-4)^2=45 \Rightarrow x-4= \pm \sqrt{45} \Rightarrow x-4=\pm \sqrt{9 \cdot 5} \Rightarrow x-4=\pm 3 \sqrt{5} \Rightarrow x=4 \pm 3 \sqrt{5}$$
 
Hello, mathsheadache!

I have to show the roots of: $$\:x^2-8x-29\:=\:0\:$$ are [math]\:c\pm d\sqrt{5}[/math]

I used completing the square method.
Once I used CTS I got the answer: $$\;(x-4)^2-45\:=\:0$$

So I am not sure what is the next step to put it in the form of [math]c\pm d \sqrt{5}[/math]
What is the purpose of CTS? . . . To solve for [math]x\,![/math]

[math](x-4)^2 - 45 \;=\;0[/math]

[math]\qquad(x-4)^2 \;=\; 45[/math]

[math]\qquad\quad x-4 \;=\;\pm\sqrt{45}[/math]

[math]\qquad\quad x-4 \;=\;\pm3 \sqrt{5}[/math]

[math]\qquad\qquad\;\, x \;=\;4 \pm 3\sqrt{5}[/math]
 
evinda said:
$$(x-4)^2=45 \Rightarrow x-4= \pm \sqrt{45} \Rightarrow x-4=\pm \sqrt{9 \cdot 5} \Rightarrow x-4=\pm 3 \sqrt{5} \Rightarrow x=4 \pm 3 \sqrt{5}$$

Thanks this really helped!
 
soroban said:
Hello, mathsheadache!


What is the purpose of CTS? . . . To solve for [math]x\,![/math]

[math](x-4)^2 - 45 \;=\;0[/math]

[math]\qquad(x-4)^2 \;=\; 45[/math]

[math]\qquad\quad x-4 \;=\;\pm\sqrt{45}[/math]

[math]\qquad\quad x-4 \;=\;\pm3 \sqrt{5}[/math]

[math]\qquad\qquad\;\, x \;=\;4 \pm 3\sqrt{5}[/math]

Cheers, you make the question look easier than it is!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
30K