Cubic Equation Challenge: What is the value of $mn^2+nk^2+km^2$?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Cubic
Click For Summary
SUMMARY

The discussion centers on evaluating the expression $mn^2 + nk^2 + km^2$ for the roots $m, n, k$ of the polynomial equation $x^3 - 2x^2 - x + 1 = 0$, where $m > n > k$. The roots are determined to satisfy the conditions $-1 < k < 0 < n < 1$ and $2 < m < 3$. The final evaluation concludes that $S_1 = mn^2 + nk^2 + km^2 = -3$ based on the derived relationships and symmetric functions of the roots.

PREREQUISITES
  • Understanding of polynomial equations and their roots
  • Familiarity with symmetric functions of roots
  • Knowledge of cubic equations and their properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of symmetric functions in polynomial roots
  • Learn about the application of Vieta's formulas in cubic equations
  • Explore methods for solving cubic equations, including Cardano's method
  • Investigate the implications of root inequalities in polynomial expressions
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial root analysis and evaluation techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all real $m,\,n,\,k$ where $m>n>k$, these three real numbers are the roots for the equation $x^3-2x^2-x+1=0$.

Evaluate $mn^2+nk^2+km^2$.
 
Mathematics news on Phys.org
anemone said:
If $m,\,n,\,k$ (all real), where $m>n>k$, are the roots for the equation $x^3-2x^2-x+1=0$, evaluate $mn^2+nk^2+km^2$.
I have slightly amended the wording of the problem to avoid the impression that it is saying that something is true "for all real $m$, $n$ and $k$".
[sp]Outline proof (I don't have time to write it out in full): Let $f(x) = x^3-2x^2-x+1$. Then $f(-1) = -1$, $f(0) = 1$, $f(1) = f(2) = -1$, $f(3) = 7$. It follows that the roots must satisfy $-1<k<0<n<1$ and $2<m<3$. This implies that $mn^2+nk^2+km^2 < 0$.

Next, Let $S_1 = mn^2+nk^2+km^2$ and $S_2 = m^2n+n^2k+k^2m$. Then $(nk+km+mn)(m+n+k) = S_1 + S_2 + 3mnk.$ But $m+n+k = 2$, $nk+km+mn = -1$ and $mnk = -1$ (symmetric functions of the roots). Therefore $S_1+S_2 = -2+3=1.$

The product $S_1S_2$ is $$(mn^2+nk^2+km^2)(m^2n+n^2k+k^2m) = (n^3k^3 + k^3m^3 + m^3n^3) + 3m^2n^2k^2 + mnk(m^3+n^3+k^3).$$ To evaluate that, notice that the equation with roots $m^3$, $n^3$, $k^3$ is given by letting $y=x^3$ in the original equation, which then becomes $y +1 = 2y^{2 /3} + y^{1 /3}$. Cube both sides to see that this gives $y^3 - 11y^2 - 4y + 1 = 0$. Therefore $m^3+n^3+k^3 = 11$ and $n^3k^3 + k^3m^3 + m^3n^3 = -4.$ Substitute those values into the above displayed equation to get $S_1S_2 = -4+3-11 = -12$.

Thus the equation with roots $S_1$ and $S_2$ is $\lambda ^2 - \lambda - 12 = 0$, with roots $\lambda=4$ and $\lambda = -3$. But we know that $S_1<0$, so the answer has to be that $S_1 = -3.$[/sp]
 
Opalg said:
I have slightly amended the wording of the problem to avoid the impression that it is saying that something is true "for all real $m$, $n$ and $k$".

Thanks, Opalg for amending the wording of the problem to make it sound for me. I appreciate that!:o

Opalg said:
[sp]Outline proof (I don't have time to write it out in full): Let $f(x) = x^3-2x^2-x+1$. Then $f(-1) = -1$, $f(0) = 1$, $f(1) = f(2) = -1$, $f(3) = 7$. It follows that the roots must satisfy $-1<k<0<n<1$ and $2<m<3$. This implies that $mn^2+nk^2+km^2 < 0$.

Next, Let $S_1 = mn^2+nk^2+km^2$ and $S_2 = m^2n+n^2k+k^2m$. Then $(nk+km+mn)(m+n+k) = S_1 + S_2 + 3mnk.$ But $m+n+k = 2$, $nk+km+mn = -1$ and $mnk = -1$ (symmetric functions of the roots). Therefore $S_1+S_2 = -2+3=1.$

The product $S_1S_2$ is $$(mn^2+nk^2+km^2)(m^2n+n^2k+k^2m) = (n^3k^3 + k^3m^3 + m^3n^3) + 3m^2n^2k^2 + mnk(m^3+n^3+k^3).$$ To evaluate that, notice that the equation with roots $m^3$, $n^3$, $k^3$ is given by letting $y=x^3$ in the original equation, which then becomes $y +1 = 2y^{2 /3} + y^{1 /3}$. Cube both sides to see that this gives $y^3 - 11y^2 - 4y + 1 = 0$. Therefore $m^3+n^3+k^3 = 11$ and $n^3k^3 + k^3m^3 + m^3n^3 = -4.$ Substitute those values into the above displayed equation to get $S_1S_2 = -4+3-11 = -12$.

Thus the equation with roots $S_1$ and $S_2$ is $\lambda ^2 - \lambda - 12 = 0$, with roots $\lambda=4$ and $\lambda = -3$. But we know that $S_1<0$, so the answer has to be that $S_1 = -3.$[/sp]

Well done, Opalg! Since the solutions that I have are more tedious than yours, hence I don't think I will show them here.:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K