MHB Cubic Equation Challenge: What is the value of $mn^2+nk^2+km^2$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Cubic
AI Thread Summary
The cubic equation \(x^3 - 2x^2 - x + 1 = 0\) has roots \(m, n, k\) where \(m > n > k\) and these roots fall within specific intervals. Evaluating the expression \(mn^2 + nk^2 + km^2\) leads to the conclusion that it is less than zero. By defining \(S_1 = mn^2 + nk^2 + km^2\) and \(S_2 = m^2n + n^2k + k^2m\), a relationship between these sums is established, ultimately leading to the equation \(\lambda^2 - \lambda - 12 = 0\). The roots of this equation are \(4\) and \(-3\), and since \(S_1\) must be negative, the final result is \(S_1 = -3\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all real $m,\,n,\,k$ where $m>n>k$, these three real numbers are the roots for the equation $x^3-2x^2-x+1=0$.

Evaluate $mn^2+nk^2+km^2$.
 
Mathematics news on Phys.org
anemone said:
If $m,\,n,\,k$ (all real), where $m>n>k$, are the roots for the equation $x^3-2x^2-x+1=0$, evaluate $mn^2+nk^2+km^2$.
I have slightly amended the wording of the problem to avoid the impression that it is saying that something is true "for all real $m$, $n$ and $k$".
[sp]Outline proof (I don't have time to write it out in full): Let $f(x) = x^3-2x^2-x+1$. Then $f(-1) = -1$, $f(0) = 1$, $f(1) = f(2) = -1$, $f(3) = 7$. It follows that the roots must satisfy $-1<k<0<n<1$ and $2<m<3$. This implies that $mn^2+nk^2+km^2 < 0$.

Next, Let $S_1 = mn^2+nk^2+km^2$ and $S_2 = m^2n+n^2k+k^2m$. Then $(nk+km+mn)(m+n+k) = S_1 + S_2 + 3mnk.$ But $m+n+k = 2$, $nk+km+mn = -1$ and $mnk = -1$ (symmetric functions of the roots). Therefore $S_1+S_2 = -2+3=1.$

The product $S_1S_2$ is $$(mn^2+nk^2+km^2)(m^2n+n^2k+k^2m) = (n^3k^3 + k^3m^3 + m^3n^3) + 3m^2n^2k^2 + mnk(m^3+n^3+k^3).$$ To evaluate that, notice that the equation with roots $m^3$, $n^3$, $k^3$ is given by letting $y=x^3$ in the original equation, which then becomes $y +1 = 2y^{2 /3} + y^{1 /3}$. Cube both sides to see that this gives $y^3 - 11y^2 - 4y + 1 = 0$. Therefore $m^3+n^3+k^3 = 11$ and $n^3k^3 + k^3m^3 + m^3n^3 = -4.$ Substitute those values into the above displayed equation to get $S_1S_2 = -4+3-11 = -12$.

Thus the equation with roots $S_1$ and $S_2$ is $\lambda ^2 - \lambda - 12 = 0$, with roots $\lambda=4$ and $\lambda = -3$. But we know that $S_1<0$, so the answer has to be that $S_1 = -3.$[/sp]
 
Opalg said:
I have slightly amended the wording of the problem to avoid the impression that it is saying that something is true "for all real $m$, $n$ and $k$".

Thanks, Opalg for amending the wording of the problem to make it sound for me. I appreciate that!:o

Opalg said:
[sp]Outline proof (I don't have time to write it out in full): Let $f(x) = x^3-2x^2-x+1$. Then $f(-1) = -1$, $f(0) = 1$, $f(1) = f(2) = -1$, $f(3) = 7$. It follows that the roots must satisfy $-1<k<0<n<1$ and $2<m<3$. This implies that $mn^2+nk^2+km^2 < 0$.

Next, Let $S_1 = mn^2+nk^2+km^2$ and $S_2 = m^2n+n^2k+k^2m$. Then $(nk+km+mn)(m+n+k) = S_1 + S_2 + 3mnk.$ But $m+n+k = 2$, $nk+km+mn = -1$ and $mnk = -1$ (symmetric functions of the roots). Therefore $S_1+S_2 = -2+3=1.$

The product $S_1S_2$ is $$(mn^2+nk^2+km^2)(m^2n+n^2k+k^2m) = (n^3k^3 + k^3m^3 + m^3n^3) + 3m^2n^2k^2 + mnk(m^3+n^3+k^3).$$ To evaluate that, notice that the equation with roots $m^3$, $n^3$, $k^3$ is given by letting $y=x^3$ in the original equation, which then becomes $y +1 = 2y^{2 /3} + y^{1 /3}$. Cube both sides to see that this gives $y^3 - 11y^2 - 4y + 1 = 0$. Therefore $m^3+n^3+k^3 = 11$ and $n^3k^3 + k^3m^3 + m^3n^3 = -4.$ Substitute those values into the above displayed equation to get $S_1S_2 = -4+3-11 = -12$.

Thus the equation with roots $S_1$ and $S_2$ is $\lambda ^2 - \lambda - 12 = 0$, with roots $\lambda=4$ and $\lambda = -3$. But we know that $S_1<0$, so the answer has to be that $S_1 = -3.$[/sp]

Well done, Opalg! Since the solutions that I have are more tedious than yours, hence I don't think I will show them here.:)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top