Current of delta 3 phase balanced power

  • Thread starter Thread starter david90
  • Start date Start date
AI Thread Summary
The discussion focuses on the calculation of L1's current in a delta 3-phase balanced power system using Kirchhoff's Current Law (KCL). Participants debate whether the equation should be IR-IB or IR+IB, considering the current directions and voltage polarities. It is noted that the choice of current polarities is arbitrary but must be consistently applied once defined. The conversation emphasizes that current and voltage polarities do not need to align, allowing for flexibility in definitions. Ultimately, clarity in the chosen conventions is crucial for accurate calculations.
david90
Messages
311
Reaction score
2
Hi,

Regarding the picture below, the author calculates L1's current with KCL equation IR-IB = L1. Why is the KCL equation not IR+IB = L1 if the voltage of phase B and Phase R at one point during their cycle can be both positive (Assume positive voltage means current go toward the node)? If Phase B and Phase R voltage are positive then their current move in the same direction and thus IR and IB should have the same signage?

https://www.electricaltechnology.org/2014/09/delta-connection-power-voltage-current.html
Screenshot 2023-08-29 231047.png
 

Attachments

  • Screenshot 2023-08-29 231047.png
    Screenshot 2023-08-29 231047.png
    29.4 KB · Views: 101
Engineering news on Phys.org
Isn't it just a matter of convention? Picture clearly shows current directions. You could mark IB as going up, that would change all equations, giving IB+IR for L1 (that's assuming I understand correctly what L1 is).

That would also make the system of equations a bit chaotic to my taste though.
 
Borek said:
Isn't it just a matter of convention? Picture clearly shows current directions. You could mark IB as going up, that would change all equations, giving IB+IR for L1 (that's assuming I understand correctly what L1 is).

That would also make the system of equations a bit chaotic to my taste though.
How can phase shift of L1 be both IB+IR and IB-IR?
 
david90 said:
Regarding the picture below, the author calculates L1's current with KCL equation IR-IB = L1. Why is the KCL equation not IR+IB = L1
The author has clearly chosen the current polarities with the indicated arrows. That's why.

It can be an arbitrary choice, you may choose a different definition. But once the choice is made it must be followed.

There is no requirement that the defined current polarities match the voltage polarities. They can be defined separately, arbitrarily.
 
I agree with DaveE. In order to keep a more clear rule we take R as more than S and S more than T and the direction of current from S to R,from T to S and from R to T.
1693548033334.png
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top