Cylindrical Conductors Carrying a Current I -- Formula (?)

requied
Messages
98
Reaction score
3
Homework Statement
The current through the cylindrical conductor s I. Its cross sectional area is pi.a^2. Now, the two cavities on the figure above can be thought of as conductors carrying a current I' into the plane of the paper, where;
Relevant Equations
I'= [I/(pi.a^2)].pi.[a/2]^2
1592927337236.png

1592927385542.png


How can I' be the formula above? Is there any formula to get this same
1592927476652.png
 
Physics news on Phys.org
The suggested path is to treat the situation as if you had a full current in the entire big conductor without the cavities, and then add in the effect of having an additional current going the other way where the cavities should be.

Did you try that?

IRL the current would be on the outer surface of the conductor ... it looks like you are supposed to model the current as uniform through the conductor (check).

Note: you can use TeX markup for equations ...

$$\frac{1}{\pi a^2}\pi \left(\frac{a}{2}\right)^2 = \frac{1}{4}$$

The code fopr that was
Code:
$$\frac{1}{\pi a^2}\pi \left(\frac{a}{2}\right)^2 = \frac{1}{4}$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top