Cylindrical Conductors Carrying a Current I -- Formula (?)

requied
Messages
98
Reaction score
3
Homework Statement
The current through the cylindrical conductor s I. Its cross sectional area is pi.a^2. Now, the two cavities on the figure above can be thought of as conductors carrying a current I' into the plane of the paper, where;
Relevant Equations
I'= [I/(pi.a^2)].pi.[a/2]^2
1592927337236.png

1592927385542.png


How can I' be the formula above? Is there any formula to get this same
1592927476652.png
 
Physics news on Phys.org
The suggested path is to treat the situation as if you had a full current in the entire big conductor without the cavities, and then add in the effect of having an additional current going the other way where the cavities should be.

Did you try that?

IRL the current would be on the outer surface of the conductor ... it looks like you are supposed to model the current as uniform through the conductor (check).

Note: you can use TeX markup for equations ...

$$\frac{1}{\pi a^2}\pi \left(\frac{a}{2}\right)^2 = \frac{1}{4}$$

The code fopr that was
Code:
$$\frac{1}{\pi a^2}\pi \left(\frac{a}{2}\right)^2 = \frac{1}{4}$$
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top