D’Alembert Vs Conservation of Energy

Click For Summary
SUMMARY

The discussion focuses on solving a physics problem involving a 5kg block being pulled up a 20-degree incline with a coefficient of friction of 0.2. The participant applies both D’Alembert’s principle and the conservation of energy to calculate the pulling force required. Key calculations include determining the frictional force, net force, work done, and power output, ultimately leading to a pulling force of approximately 19.828N. The discussion highlights the importance of accounting for non-conservative forces, such as friction, when applying energy conservation principles.

PREREQUISITES
  • Understanding of D’Alembert’s principle
  • Knowledge of Newton's laws of motion
  • Familiarity with the concept of work and energy
  • Basic trigonometry for calculating forces on an incline
NEXT STEPS
  • Study the application of D’Alembert’s principle in various mechanical systems
  • Learn about the effects of non-conservative forces on energy conservation
  • Explore advanced topics in friction and its impact on motion
  • Investigate the relationship between work, energy, and power in physics problems
USEFUL FOR

Students in physics courses, educators teaching mechanics, and anyone interested in understanding the dynamics of forces on inclined planes.

GrimUpNorth
Messages
2
Reaction score
0

Homework Statement


A block with a mass of 5kg is pulled up an incline with a 20 degree incline, the coefficient of friction is 0.2 and the distance 10 metres. The block accelerates from 1m/s at point A to 5m/s at point B.
I have to use both D’Alembert’s and Conservation of energy principles.

Does the following look correct? I only have one chance to get it right so want to make sure it’s correct.

Homework Equations


Frictional force=µ*M*g*cosӨ
a=(v2-u2)/2s
Net force=Ma
t=(v-u)/a

W + PE(initial) +KE(initial) =PE(final) +KE(final) +Heat lost due to friction
3. The Attempt at a Solution [/B]
Mass of the block=5kg
Angle of inclination=20 ̊
Displacement, s=10m
Initial velocity=1m/s
Final velocity=5m/s
Coefficient of friction, µ=0.2
From Alembert’s principle, net force-Ma=0 (Ghosh, 2016, pp.9)
Net force=pulling force -frictional force
Frictional force=µ*M*g*cosӨ
=0.2*5*9.81*cos (20)
=9.218 N
From Newtons laws, v2=u2+2as
a=(v2-u2)/2s
= (25-1)/2*10
=2.4m/s2
Therefore, Ma=5*2.4=12N
From the above principle,
Net force=Ma
=12N
Pulling force=Net force + frictional force
=12N + 9.218N
=21.218N
Work done in moving the block from point A to B equals pulling force*displacement(AB)
=21.218*10
=212.18J
From Newtons laws=U+ at
Therefore, t=(v-u)/a
= (5-1)/2.4
=1.66sec
Power=work done/time
=212.18/1.66 =128.2 Watts
Principle of conservation of energy
From this principle, energy can only be transformed into other forms but cannot be created or destroyed. Therefore, the net work done by the forces is zero as mechanical energy is conserved.
Work input=W
potential energy=PE
Kinetic energy =KE
Using this principle, we obtain the following equation;
W + PE(initial) +KE(initial) =PE(final) +KE(final) +Heat lost due to friction……(i)
PE(initial)=0, since initial height is zero
KE(initial)=(m*u2)/2= 2.5J
PE(final) =(mgh)=5*9.81*cos (20)
=46.1J
KE(final)=(m*v2)/2= (5*52)/2
=62.5J
Heat lost due to friction=µMg*cosӨ*d=0.2*5*9.81*cos20*10
=92.18J
Equation (i) above reduces to:
W+KE=PE +KE+Energy lost as heat, since initial PE equals zero
Substituting the corresponding values,
W+2.5=46.1+62.5+92.18
Making W the subject of the formula,
W=-2.5+46.1+62.5+92.18
=198.28J
From work done obtained above(W=198.28J), pulling force will be
F=w/d
=198.28/10=19.828N
 
Physics news on Phys.org
Though you do not say so, I assume you are trying to solve for the force applied to pull the block up the ramp.

You have an arithmetic error here:
GrimUpNorth said:
a=(v2-u2)/2s
= (25-1)/2*10
=2.4m/s2

I would not use conservation of energy here since friction is a non-conservative force. You do account for the heat lost to friction, but I think you are making things unnecessarily complicated. I suggest that you write the equation for the net acceleration up the ramp, including the pulling force, friction and component of the force of gravity pulling down the ramp. You can also find the net acceleration in terms of the distance traveled and initial and final velocities of the block. Set the two expressions for net acceleration equal and solve for the pulling force.
 
  • Like
Likes   Reactions: GrimUpNorth
tnich said:
Though you do not say so, I assume you are trying to solve for the force applied to pull the block up the ramp.

You have an arithmetic error here:I would not use conservation of energy here since friction is a non-conservative force. You do account for the heat lost to friction, but I think you are making things unnecessarily complicated. I suggest that you write the equation for the net acceleration up the ramp, including the pulling force, friction and component of the force of gravity pulling down the ramp. You can also find the net acceleration in terms of the distance traveled and initial and final velocities of the block. Set the two expressions for net acceleration equal and solve for the pulling force.
Thank you, I have to use both principles and then compare and contrast the results for the assignment.
tnich said:
Though you do not say so, I assume you are trying to solve for the force applied to pull the block up the ramp.

You have an arithmetic error here:I would not use conservation of energy here since friction is a non-conservative force. You do account for the heat lost to friction, but I think you are making things unnecessarily complicated. I suggest that you write the equation for the net acceleration up the ramp, including the pulling force, friction and component of the force of gravity pulling down the ramp. You can also find the net acceleration in terms of the distance traveled and initial and final velocities of the block. Set the two expressions for net acceleration equal and solve for the pulling force.

Thank you, I need to use both principles for the assignment.
Does this look a better equation to use?
 

Attachments

  • 4595D693-66AF-47FC-8A13-F85DFC70C215.jpeg
    4595D693-66AF-47FC-8A13-F85DFC70C215.jpeg
    29.7 KB · Views: 850
GrimUpNorth said:
Thank you, I have to use both principles and then compare and contrast the results for the assignment.Thank you, I need to use both principles for the assignment.
Does this look a better equation to use?
Yes, I think you have the right numerical answer now. That will give you something to check the other methods against.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
24
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
15
Views
2K
Replies
20
Views
3K
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K