I Dark Matter as a condensation of photons in a space

AI Thread Summary
The discussion centers on the concept of dark matter potentially being a condensation of photons, suggesting that photons could contribute to gravitational effects similar to mass. However, it is clarified that photons have no rest mass, and their energy is described by the equation E=pc, not E=mc^2. While the energy of photons does influence gravity, its impact is negligible in the current universe due to the rapid dilution of photon energy with cosmic expansion. Observations of dark matter require behaviors distinct from light, such as forming localized overdensities, which photons cannot achieve. Ultimately, the idea that photons could act as dark matter is not supported by current understanding of physics.
ahmashojaeddin
Messages
1
Reaction score
0
TL;DR Summary
could we think of DARK MATTER as condencation of photons in a space (eg. galactic space) that not yet escaped from that huge wide space due to limitaion of light speed?
if we assume each photon of light as a very very light piece of matter (by famous E = mc^2 and then: m = E / c^2) and sum up all photons that have been made from the creation time of a galaxy (also considering limitation of speed of light) and also photons that accidentally passing throw that galaxy (eg. coming from other galaxies), could we result that, relativistic mass of these photons can act as matter that can curve space-time and doing like DARK MATTER as they don't emmit photons and do not absorb or reflect them?
 
  • Skeptical
Likes Astronuc, PeroK and weirdoguy
Astronomy news on Phys.org
1) You can't use ##E=mc^2## for photons, since m stands for rest mass and photons have none. The full equation is ##E^2=(mc^2)^2+(pc)^2##, which for zero rest mass reduces to ##E=pc##, where p is momentum.
2) The energy of photons does contribute to gravity, similar to mass. But it's negligible at current epoch in the history of the universe, due to it diluting with the expansion of space faster than any other kind of energy. The only time when there was enough energy in photons in the universe to count for anything was back when the universe was still opaque to light. All the observation suggesting dark matter come from later epochs, and require behaviour different than that of light (such as forming localised overdensities).
3) Photons don't emit photons, but they are photons. Which means they are observable. A shining light bulb is not dark.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Back
Top