MHB DE 2.1.1.16 Find the solution of the give initial value problem

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the solution of the give initial value problem

$\displaystyle y^\prime - \frac{2}{t}y
=\frac{\cos{t}}{t^2};
\quad y{(\pi)}=0, \quad t>0$$u(t)=e^{2 \ln{t}}$then
$\displaystyle e^{2\ln{t}}\, y^\prime - \frac{2e^{e^{2\ln{t}}}}{t}y
= \frac{e^{2\ln{t}}\cos{t}}{t^2}$not sure actually!
 
Physics news on Phys.org
$e^{\int -\frac{2}{t} \, dt} = e^{-2\ln{t}} = \dfrac{1}{t^2}$

check the original DE statement again ...
 
skeeter said:
$e^{\int -\frac{2}{t} \, dt} = e^{-2\ln{t}} = \dfrac{1}{t^2}$

check the original DE statement again ...

thus...

$\displaystyle e^{-2\ln{t}}\, y^\prime - \frac{-2e^{e^{2\ln{t}}}}{t}y = \frac{e^{-2\ln{t}}\cos{t}}{t^2}$
 
that’s not what I meant ...

please double check the original DE from wherever you got it from, specifically the right side
 
skeeter said:
that’s not what I meant ...

please double check the original DE from wherever you got it from, specifically the right side
#16View attachment 9702
 

Attachments

  • 2020_04_23_18.52.40.jpg
    2020_04_23_18.52.40.jpg
    22.8 KB · Views: 125
karush said:
#16

First of all, please note you made a typo in your original DE, which is why Skeeter said your integrating factor is wrong.

With the correct equation as in your picture, your integrating factor is correct, but you will not be able to do the integration unless you simplify it. $\displaystyle \mathrm{e}^{2\ln{(t)}} = \mathrm{e}^{\ln{\left( t^2 \right) }} = t^2 $. Then the integration will be doable...
 
Find the solution of the give initial value problem

$\displaystyle y^\prime + \frac{2}{t}y
=\frac{\cos{t}}{t^2};
\quad y{(\pi)}=0, \quad t\ge 0$

$u(t)=e^{\displaystyle\ln{t^2}}$

then
$\displaystyle e^{\ln{t^2}}\, y^\prime +\frac{e^{\ln{t^2}}}{t}y
= \frac{e^{\ln{t^2}}\cos{t}}{t^2}$

$\displaystyle(y'\cdot e^{\ln{t^2}})'=\frac{e^{\ln{t^2}}\cos{t}}{t^2}=\cos{ t}$

proceed ?
 
Last edited:
$y’ + \dfrac{2}{t} \cdot y = \dfrac{\cos{t}}{t^2}$

multiply evert term by the integrating factor, $e^{\int 2/t \, dt} = e^{2\ln{t}} = t^2$ ...

$y’t^2 + 2ty = \cos{t}$

$(yt^2)’ = \cos{t}$

now proceed
 
skeeter said:
$y’ + \dfrac{2}{t} \cdot y = \dfrac{\cos{t}}{t^2}$

multiply evert term by the integrating factor, $e^{\int 2/t \, dt} = e^{2\ln{t}} = t^2$ ...

$y’t^2 + 2ty = \cos{t}$

$(yt^2)’ = \cos{t}$

now proceed
$y(t)=\dfrac{\sin{t}}{t^2}+\frac{c}{t^2}$
So if $y(\pi)=0$ then
$y(\pi)=\dfrac{\sin{\pi}}{\pi^2}+\dfrac{c}{\pi^2}=0 $
$c=-1$

Really??
 
Last edited:
  • #10
$\displaystyle yt^2 = \int \cos{t} \, dt$

$yt^2 = \sin{t} + C$

$y = \dfrac{\sin{t}}{t^2} + \dfrac{C}{t^2}$

$y(\pi) = 0 \implies 0 = \dfrac{\sin(\pi)}{\pi^2} + \dfrac{C}{\pi^2} \implies C = 0$

$y = \dfrac{\sin{t}}{t^2}$
 
  • #11
Ok saw my error
 
Back
Top