- #1
rwooduk
- 762
- 59
Homework Statement
Homework Equations
Please see below.
The Attempt at a Solution
I'm pretty sure my method is correct but I'm getting small answers:
$$
COM \\ \\
E_{6}= E_{2}+E_{\alpha}
\\
\\
Minus \ E_{2} \ and \ square \ both\ sides\\
\\
E_{6}^{2}+E_{2}^{2}-2E_{2}E_{6}=E_{\alpha}^{2}\\ \\
E_{6}^{2}= m_{6}^{2}c^{4}\\
\\
E_{2}^{2}= \rho_{\alpha}^{2}c^{2} + m_{2}^{2}c^{4}\\ \\
E_{\alpha}^{2}= \rho_{\alpha}^{2}c^{2} + m_{\alpha}^{2}c^{4}\\ \\
Rearranging \ I \ get: \\ \\
E_{2}=\frac{(m_{6}^{2}+m_{2}^{2}-m_{\alpha}^{2})c^{4}}{2E_{6}}$$
Now this is where I get strange results (probably my units), if I sub in for $$E_{6}$$ and insert numerical values I get:
$$E_{2}=\frac{(8.71\cdot 10^{10})(\frac{MeV}{c^{2}})^{2}c^{4}}{2\cdot (210541.379)(\frac{MeV}{c^{2}})c^{2}}= \frac{(8.71\cdot 10^{10})(\frac{MeV}{c^{2}})c^{2}}{2\cdot (210541.379)}$$
Which is 206808MeV. Then if I divide by c^2 I get ~7x10^-4 MeV/c^2 which is really small?