A Decay of supercurrents connected to non-superconducting zones?

StanislavD
Messages
14
Reaction score
6
TL;DR Summary
Will a persistent supercurrent in a superconducting (SC) aluminum ring decay, if we connect the SC aluminum ring to an aluminum wire and the remote end of the wire is located in a separate chamber with T > Tc (or H > Hc)?
This question is more complicated than it seems, most physicists cannot answer it unambiguously and there is no experiments to the issue. Imagine, a persistent supercurrent flows in a SC aluminum ring. Then we connect the SC aluminum ring (without solder) to an aluminum wire, the second end of the wire is in a separate chamber with T > Tc (or H > Hc) and is not SC. The temperature of the SC ring is stable below Tc. Thus the SC ring is directly connected to a non-SC zone where electron pairs dissipate their supercurrent momenta on atom lattice. Will the remote non-SC zone suppress the persistent supercurrent in the SC ring?

Experimental setup to the question is shown in Figure 1 in

https://www.researchgate.net/public...me_of_Cooper_pairs_in_a_Massive_Aluminum_Ring
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Back
Top