Deducing Sample Size from Sample Proportion CI

  • Thread starter Thread starter pluviosilla
  • Start date Start date
  • Tags Tags
    Ci Sample size
pluviosilla
Messages
17
Reaction score
0

Homework Statement



Suppose we want to estimate a sample proportion to within 0.05 with 95% confidence, how large will the sample have to be?

There is no other information about the distributions of the population or the sample.

How do I approach this problem?

Homework Equations



See attempted solution below.

for a proportion problem, sample stddev, sigma x bar = sqrt(pq/n)

The Attempt at a Solution



No point in trying to solve for n in the equation 1.96 * sqrt(pq / n) = 0.05, because I don't know what pq is.

(This is NOT homework. I'm a 62 year-old brushing up on statistics for professional reasons, but one of your "mentors" with a bike-riding avatar is worried that I might be cheating on a high school exam, so he sent me here. Maybe I'm in my 2nd childhood, which is why I provoke these suspicions. I got some *great* responses to more difficult statistics problems on this forum back in 2012. I do hope your new policies have not rendered this resource useless to me. I will go bug people on the actuarial forums if you force me to, though I'd rather not because I think this is a more appropriate venue - or used to be, anyway.)
 
Physics news on Phys.org
pluviosilla said:

Homework Statement



Suppose we want to estimate a sample proportion to within 0.05 with 95% confidence, how large will the sample have to be?

There is no other information about the distributions of the population or the sample.

How do I approach this problem?

Homework Equations



See attempted solution below.

for a proportion problem, sample stddev, sigma x bar = sqrt(pq/n)

The Attempt at a Solution



No point in trying to solve for n in the equation 1.96 * sqrt(pq / n) = 0.05, because I don't know what pq is.

(This is NOT homework. I'm a 62 year-old brushing up on statistics for professional reasons, but one of your "mentors" with a bike-riding avatar is worried that I might be cheating on a high school exam, so he sent me here. Maybe I'm in my 2nd childhood, which is why I provoke these suspicions. I got some *great* responses to more difficult statistics problems on this forum back in 2012. I do hope your new policies have not rendered this resource useless to me. I will go bug people on the actuarial forums if you force me to, though I'd rather not because I think this is a more appropriate venue - or used to be, anyway.)

You may not know what ##p## and ##q = 1-p## are, but ##pq = p(1-p)## has a maximum over ##0 \leq p \leq 1## at the point ##p = 1/2##, where it equals ##1/4##. That is, ##p q \leq 1/4## for all ##p \in [0,1]##. If you replace ##pq## in your formula above by ##1/4## and then solve for ##n##, that ##n## will be larger (or, at least, not smaller than) the actual ##n## that would go along with ##p,q## if you knew what they were. In other words, you can't go wrong if you solve
1.96 \sqrt{0.25/n} = 0.05.
You may be using a larger ##n## than you really need, so you may be performing more experiments than you really require. The point is, though, that you will not be performing fewer experiments than you really need.
 
  • Like
Likes pluviosilla
Ray Vickson said:
You may not know what ##p## and ##q = 1-p## are, but ##pq = p(1-p)## has a maximum over ##0 \leq p \leq 1## at the point ##p = 1/2##, where it equals ##1/4##. That is, ##p q \leq 1/4## for all ##p \in [0,1]##. If you replace ##pq## in your formula above by ##1/4## and then solve for ##n##, that ##n## will be larger (or, at least, not smaller than) the actual ##n## that would go along with ##p,q## if you knew what they were. In other words, you can't go wrong if you solve
1.96 \sqrt{0.25/n} = 0.05.
You may be using a larger ##n## than you really need, so you may be performing more experiments than you really require. The point is, though, that you will not be performing fewer experiments than you really need.

Great response! Thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top