MHB Define a discontinuous sine function?

  • Thread starter Thread starter samir
  • Start date Start date
  • Tags Tags
    Function Sine
Click For Summary
A discontinuous sine function can be defined to be undefined at multiples of π while retaining continuity elsewhere. The proposed function needs to ensure that it assigns a value different from zero at these discontinuous points to meet the mathematical definition of discontinuity. A suggested correction is to define the function as f(x) = sin(x) for x not equal to πn, and assign a specific value (not zero) for x equal to πn. Additionally, the conditions in the function definition must be mutually exclusive to avoid ambiguity. Clear and precise notation is essential for accurate mathematical representation.
samir
Messages
27
Reaction score
0
Hi!

I want to define a sine function that is discontinuous at multiples of $\pi$. The multiplier is to be an integer.

How can I do that?

I am thinking about something like this:

$$f(x)=\begin{cases}sin(x) & x \in \Bbb{R} \\ \text{undefined} & x=n \cdot \pi | n \in \Bbb{Z} \text{ and } x \in \Bbb{R}\end{cases}$$

Is this a valid statement?

Not only does it need to be discontinuous, but also undefined at these multiples. I believe it is the only way to have such a function be discontinuous at those multiples. Let me know if you know of another way.

I tried to graph this on my calculator but it didn't work. I think I need to define the condition for undefined in terms of x. Can I do that?

It seems like my calculator wants me to define $n$ first before I use it. But how do you define a variable that holds an element of the infinite set of integers? I'm not so sure. If I could set the data type to integers, that would get me half way there. Since it is a programmable calculator it should be possible. This is more of a product usage question, so I will leave that off for now. What I really want to know is if my definition of such function above is mathematically correct? I can deal with the calculator and graphing later.
 
Last edited:
Mathematics news on Phys.org
A function can only be continuous or discontinuous at points where it is defined, because the definition of continuity/discontinuity involves the value of the function at that point. So your function need to be defined at multiples of $\pi$, but its value there should be different from the value of the sine function at those points (which is $0$). So you should amend your definition to say that $f(x) = \sin x$ when $x$ is not a multiple of $\pi$, and $f(x) = 1$ (say, or $17.629$, or anything at all other than $0$), when $x$ is a multiple of $\pi$.
 
I would write
$$
f(x)=\begin{cases}\sin(x), & x \ne\pi n\text{ for any }n\in\mathbb{Z}\\ \text{undefined}, & \text{otherwise}\end{cases}
$$
The conditions in the two branches should be mutually exclusive. The conditions $x\in\Bbb R$ and $x=\pi n$ for some $n\in \Bbb Z$ are not mutually exclusive. Further, the vertical bar is only used in the set-builder notation, e.g., $\{x\in\Bbb R\mid x>0\}$ (and in this case it is written using the LaTeX command [m]\mid[/m] to create correct spacing on both sides). It does not have a universally accepted meaning of "such that" in other contexts. Finally, it is superfluous to write $x=n \cdot \pi | n \in \Bbb{Z} \text{ and } x \in \Bbb{R}$ because $x=\pi n$ and $n\in\Bbb Z$ imply $x\in\Bbb R$.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
5K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
1K
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K